海亀類 (総説)

はえ縄で混獲されたヒメウミガメ Lepidochelys olivacea

海亀類と漁業の背景

海亀類は、世界の熱帯域から温帯域にかけて広く分布しており、陸上で産卵・孵化する以外、稚亀から成熟亀まで生活史のほとんどを海洋で過ごしている。海亀類と漁業の関係については、はえ縄、定置網、ひき網、刺網等で海亀類が混獲される一方で、一部地域では人間の食料として海亀を対象とした漁業や採卵が行われている。また、地域によっては海亀を神聖な生物として扱い、漁業で混獲された海亀を漁師が丁重に扱って海に返したり、死んで捕獲された海亀を手厚く葬ったりする風習がある。このように本邦の地域漁業文化と海亀類は密接に関係しているが、近年では個体数が減少している海亀種について漁業活動による影響を軽減していくことが大きな課題となっている。現在、水産庁と水産研究・教育機構では、まぐろはえ縄漁業における海亀類の混獲の回避策を構築するべく調査研究を実施しており、海亀資源の保存管理と漁業との共存をめざしている。

生物学的特性

【種類】

海亀類は、アカウミガメ(Caretta caretta)、アオウミガメ(Chelonia mydas mydas)、タイマイ(Eretmochelys imbricata)、ケンプヒメウミガメ(Lepidochelys kempii)、ヒメウミガメ(Lepidochelys olivacea)、ヒラタウミガメ(Natator depressus)のウミガメ科 5 属 6 種とオサガメ(Dermochelys coriacea)のオサガメ科 1 属 1 種の計 7 種に分類されている。主に東部太平洋に生息するクロウミガメ(Chelonia mydas agassizii)は、形態学的特徴から別種とすべきであるという意見(Pritchard et al. 1983、Okamoto and Kamezaki 2014)と遺伝学的にアオウミガメの亜種とする意見(Bowen et al. 1993)があり、独立した種として扱われることもある(日本爬虫両棲類学会 2023)。

【分布と回遊】

海亀類は、熱帯域を中心として世界中に広く分布するが、種

によってその分布範囲や回遊経路に違いがみられる(図1、2)。 アカウミガメは世界の温帯から亜熱帯域を中心に分布し、日本 は北太平洋における唯一の産卵地となっている。日本で孵化し た稚亀は、太平洋を数年かけて横断し、ハワイ諸島近海からカ リフォルニア沖で 20 年ほどかけて成長し(Tomaszewicz et al. 2015)、繁殖のために日本近海に戻ってくる (Briscoe et al. 2016)。また、成熟した雌個体は、産卵後東シナ海に回遊する グループと太平洋に回遊するグループが存在する(Hatase et al. 2002)。アオウミガメは世界の熱帯域を中心に温帯域まで 広く分布し、日本では小笠原諸島と屋久島・種子島以南の島嶼 部で産卵が行われている。本種は主に沿岸域を索餌海域とし、 産卵地と索餌海域が 1,000 km 以上離れている (例:小笠原諸 島(繁殖場)と本州沿岸(索餌域)、英領アセンション島(繁 殖場)とブラジル近海(索餌場))場合や、外洋で索餌する場 合もあることが知られている(Hatase et al. 2006)。クロウ ミガメは主に東太平洋に生息しており、産卵地はガラパゴス諸 島等の中南米の太平洋岸であるが、近年日本沿岸でも発見例が 増えてきている。タイマイは世界の熱帯域を中心に分布し、日 本では沖縄県で産卵が行われているほか、亜成体は本州でも確 認される。ケンプヒメウミガメの成熟亀はメキシコ湾を中心と した大西洋の限られた海域に分布するが、幼体や亜成体は北大 西洋に広く分布する。本種の産卵地はメキシコのランチョヌエ ボとベラクルスのみであったが、1960年代から米国とメキシ コによる本種の産卵地を増やすための国際共同プロジェクト がなされ、テキサス州パドレ島においても産卵が見られるよう になった。ヒメウミガメは世界の熱帯域を中心に分布し、沿岸 から外洋まで幅広く利用している。ヒラタウミガメはオースト ラリア北部を中心とした、太平洋とインド洋の限られた海域に 分布する。オサガメは世界の熱帯、温帯域の外洋域に分布する が、遊泳能力が高く、高緯度帯にも回遊することが知られてい る (Bleakney 1965)。また、これまでの衛星追跡研究から、 大西洋及び太平洋では北緯 50 度から南緯 40 度までの範囲を 広く利用することが明らかになっており(Schillinger and Bailey 2015)、高緯度における分布記録は北緯 71 度、南緯 47 度である(Pritchard and Trebbau 1984)。

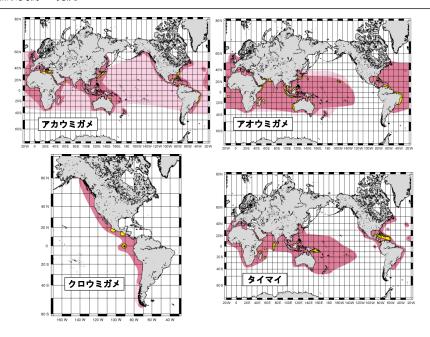


図 1. アカウミガメ、アオウミガメ、クロウミガメ及びタイマイの分布域(濃赤:確実な分布域、薄赤:推定分布域、黄:繁殖場)(Marquez-M. 1990、Seminoff and the Green Turtle Task Force 2004、Spotila 2004)

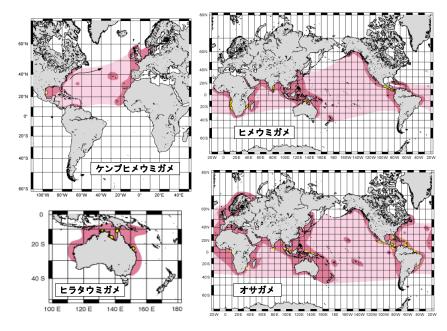


図 2. ケンプヒメウミガメ、ヒメウミガメ、ヒラタウミガメ及びオサガメの分布域(濃赤:確実な分布域、薄赤:推定分布域、黄:繁殖場)(Marquez-M. 1990、Spotila 2004)

【成長・成熟】

海亀類は一般に甲長によりその成長が測られる。野生下での成長を知るには、放流時に甲長を計測しておき、その個体が再発見された際に再び計測することにより、この期間の成長率が算出される。種を問わず、体サイズが大きくなるにつれて成長率が低くなる傾向にあるが、成熟前までの個体のおおよその年間成長速度はアカウミガメでは $1.5\sim7.4~{\rm cm}$ (Bjorndal 2003、Braun-McNeill et~al. 2008)、アオウミガメでは $0.3\sim8.8~{\rm cm}$ (Bjorndal and Bolten 1988a、Zárate et~al. 2015)、タイマイでは $1.3\sim5.8~{\rm cm}$ であるが(León and Diez 1999、Bell and

Pike 2012)、中には、バハマのアカウミガメ (15.7 cm; Bjorndal and Bolten 1988b) やカリブ海英領ヴァージン諸島のタイマイ (9.3 cm; Hawkes et al. 2014) のように成長率が高い集団も存在する。なお、外洋域を主な生息域とするオサガメ、ヒメウミガメの野生下での成長に関する報告は非常に少ない。また、飼育下での成長は野生下より良く、アオウミガメで 12 cm/年 (Bjorndal et al. 2013) 成長することが知られており、例外的ではあるが、アカウミガメでは 34 cm/年 (Swingle et al. 1993) という記録もある。

海亀類の年齢について外見から知ることは不可能であるが、 解剖学的に年齢を推定する試みでは、オサガメを除き一般に上 腕骨等に形成される輪紋が(Zug et al. 1986、Avens and Snover 2013)、オサガメでは眼球の強膜小骨に形成される輪紋が(Avens et al. 2009)、それぞれ年齢を知る形質として有効とされている。野生個体では実年齢との比較が難しいこと、年数の経過とともに骨の中心部が消失してしまうことから、輪紋の計数による高齢個体の年齢査定は困難である。初めて性成熟に達する年数は、アカウミガメとアオウミガメではおよそ $15\sim50$ 年、ヒメウミガメでは $13\sim26$ 年、タイマイではおよそ $14\sim35$ 年、オサガメでは $13\sim20$ 年と推定されている(Limpus 1992、Mortimer and Donnelly 2008、Avens and Snover 2013、Petitet et al. 2015、Avens et al. 2021)。

性成熟に達するサイズについては、産卵のため上陸した個体を対象とした調査が様々な産卵地で行われてきている。調査の結果から、各種の産卵個体の平均甲長は、アカウミガメでは直甲長 74~91 cm、アオウミガメで直甲長 88~110 cm(クロウミガメは直甲長 82 cm)、タイマイで直甲長 66~86 cm、ヒメウミガメで直甲長 63~69 cm、ケンプヒメウミガメで直甲長65 cm、オサガメで曲甲長150~165 cm、ヒラタウミガメで曲甲長90 cmと報告されている(Eckert et al. 2012、石原2012)。飼育下では成長が良いことにより成熟も早くなる傾向にあり、カリブ海英領ケイマン諸島のグランドケイマン島で養殖されているアオウミガメでは、最短で7年で性成熟した例が報告されている。

【食性】

海亀類の食性は種によって異なる。アカウミガメ、ヒメウミガメ及びケンプヒメウミガメは雑食性が強く、甲殻類や貝類等を主に摂餌する。アオウミガメ(クロウミガメを含む)は主に草食性であり、海草類及び海藻類等を摂餌する。ヒラタウミガメは、巻貝やナマコ等の軟体無脊椎動物を摂餌する。タイマイは、海綿食という独自の摂餌生態を持つ。オサガメは、クラゲやその他の浮遊性生物等の低次栄養段階の生物を摂餌する。

利用・用途

海亀類は古くから食用目的で利用されており、16~17世 紀にはすでにアオウミガメが船の乗組員等によって食料とさ れていた(Daley et al. 2008)。20世紀になると世界各地でア オウミガメの肉がスープ等として利用され(Parsons 1962、 Limpus 1980)、オーストラリア西部では、1960~70 年代に 大規模なアオウミガメ漁が合法的に実施されていた(Prince 1998)。また、ニカラグアやメキシコ等の中米から、ヒメウミ ガメやアオウミガメが米国に食肉として輸出されていた (Mack et al. 1982)。また、コモロ諸島やミクロネシア連邦、 仏領ポリネシア等からの食中毒事例の報告に基づき、タイマイ が食用目的で利用されていることがわかっている(Fussy et al. 2007、Kirschner and Jacobitz 2011、Mbaé et al. 2016)。 こ のほか、グランドケイマン島では1968年から食用目的として アオウミガメの養殖が行われていたり(D'Cruze *et al.* 2015)、 コスタリカのオスティオナルでは1987年から資源管理計画に 基づき、ヒメウミガメの卵が合法的に採取されたりしている (Ballestero et al. 2000)。日本においては、南西諸島や伊豆 諸島ではアオウミガメが、九州南部、四国南部、紀伊半島南部

ではアカウミガメが主に食用目的で利用され(藤井 2012)、 1970 年代初頭までは屋久島でアカウミガメの卵が貴重なタン パク源として消費されていた(畑瀬 2013)。小笠原諸島では、 1830年以降190年にわたりアオウミガメを対象とした海亀漁 が行われてきた。現在でも小笠原諸島や沖縄県では、時期やサ イズに制限を設けたうえで、許可等を受けた者に限り食用等の 目的での捕獲が認められている。食用目的以外での利用として は、江戸時代には長崎県や和歌山県で海亀類の脂肪が灯油とし て利用されていたほか、宮崎県ではアカウミガメの卵が精力剤 や結核、高血圧の特効薬として、沖縄県では血液が肺病や血圧 の薬として、脂肪が傷薬として用いられていた(藤井 2012、 2016)。また、宮崎県では子亀がペットや壁掛けとして販売さ れたこともあったほか(藤井 2016)、沖縄県や奄美地方では アオウミガメやタイマイが剥製にされ、土産物等として販売さ れていた(藤井 2012)。また、タイマイの鱗板がくしやかん ざし等べっ甲材としての利用を目的としてカリブ海や東南ア ジアを中心とした世界各地から大量に日本を中心とするアジ ア諸国に、ヒメウミガメやアオウミガメの皮革がベルトやハン ドバッグの材料として中米や東南アジアから日本に輸入され ていた (Mack et al. 1982、The San Diego Union 1990)。な お、1992年に海亀類全種がワシントン条約の附属書 | に掲載 されたため現在では国際商取引は行われていない。国外での食 用以外の目的での利用としては、パキスタンにて、アオウミガ メの脂肪が船板のコーキング剤として用いられていたことに 加えて、卵をラクダやヤギ、人間向けの薬として服用していた ことが知られている(Groombridge et al. 1988)。

資源の現況と管理策

【個体群の動向】

海亀類各種の個体群動向は世界各国に点在する産卵地によって違いがあり、詳細について把握することは困難である。国際自然保護連合(IUCN)の Marine Turtle Specialist Group は種別の増減や絶滅危険度の評価を行い、その結果を公表している。このうち、オサガメ、アカウミガメ、ヒメウミガメの最新の評価結果を表1に要約した。また、The State of the World's Sea Turtles(SWOT)が2012年に世界各地におけるウミガメの産卵数の集計を行うとともに、海亀各種において絶滅が危惧されている個体群と健全な個体群をまとめている(SWOT 2012)。種別における個体群の状況を以下に説明する。

オサガメについては、太平洋及び西大西洋の産卵地で減少傾向を示している一方、東大西洋の多くの場所では安定もしくは増加傾向にある(National Marine Fisheries Service and U.S. Fish and Wildlife Service 2013a)。メキシコとコスタリカの太平洋岸における産卵個体群は絶滅の危機に瀕しており、マレーシアの産卵個体群は 2000 年ごろに絶滅したと考えられている(Liew 2011)。その他の太平洋の産卵地では、インドネシア、パプアニューギニア、ソロモンの西部太平洋に大きな産卵地が存在する。インドネシアの西パプア州においても産卵個体数は減少傾向にある。太平洋オサガメ個体群の減少要因としては、西太平洋では、沿岸における産卵雌や卵の乱獲が、東太平洋ではこれらに加えて刺網漁等の沿岸漁業による混獲がはえ縄漁による混獲と相対して影響が大きい傾向にあることが示

されている(Kaplan 2005)。一方、大西洋個体群においては、南米側の仏領ギアナ、スリナムとアフリカ側のガボンに大規模な産卵地があり、仏領ギアナとスリナムでは産卵個体数が近年減少している(Eckert and Eckert 2019)。ガボンにおける産卵雌は、15,730~41,373 個体と世界最大の産卵個体数であると推定されており、産卵個体数の減少は見られていない(Witt et al. 2009)。なお、インド洋では、南アフリカの北東部に位置するクワズールナタール州やスリランカ等に小規模ながら産卵地が存在する。

アカウミガメについては、北太平洋個体群の産卵個体数が、 1980 年代後半に増加傾向を示したが、1990 年代では減少傾向 に転じ、その後は 1997 年に最小となった。1998 年以降、産 卵個体数は全体として増加傾向となり、2013 年に 15,078 巣 /年と最大となった(松沢 2016)。この現状を踏まえ、2015 年の IUCN 評価により軽度懸念種に引き下げられた (Casale and Matsuzawa 2015)。一方、大西洋では米国沿岸を分布の 中心とする北西大西洋個体群は、増減を繰り返しながらも 2013年から2015年には毎年50,000巣以上の産卵があり、産 卵雌個体数は 40,000 個体以上と推定されている (Chapman and Seminoff 2016)。また、南西大西洋個体群(主要産卵地: ブラジル)も増加傾向にあり、2015年には6,600巣以上の産 卵が記録されている (Chapman and Seminoff 2016)。北東 大西洋個体群は 2007~2009 年に 12,028~19,950 巣/年 (Marco et al. 2012)、地中海個体群は推定で年に 7,200 巣以 上 (Casale and Margaritoulis 2010) 、北西インド洋個体群は 2010~2014 年に推定で 64,561 巣/年の産卵があった (Witherington et al. 2015) 。

ヒメウミガメはアリバダと呼ばれる集団産卵をすることが

知られている。太平洋では、コスタリカのオスティオナルにおいて、保全活動の成功により 1980 年代初頭に 35,000~ 180,000 個体だった産卵雌個体数は推定で 476,550 個体以上まで増加した(Valverde et al. 2012)。ニカラグアのラ・フローでは 2008~2009 年にかけてのシーズンに推定で 520,000 巣以上の産卵があった(Gago et al. 2012)。東南アジアの個体群は低位水準にある。インドのオリッサ州では産卵個体数は数十万個体に達するが減少傾向にある。一方、大西洋では、ガボンに大西洋最大の産卵地が発見され、2,370~9,814 巣/年が確認されている(Metcalfe et al. 2015)。SWOT(2012)の評価では、北東部インド洋(主要産卵地:インド)及び西部インド洋(主要産卵地:インド)及び西部インド洋(主要産卵地:インド、オマーン)の各個体群は絶滅が危惧されており、東部太平洋(主要産卵地:メキシコ、コスタリカ、ニカラグア)の個体群は健全と評価されている。

アオウミガメの産卵個体数は、直近 10 年においてトルコ、台湾、マレーシアのトレンガヌ等では減少傾向にあるものの、大西洋ではコスタリカと米国のフロリダ、インド洋ではセーシェルや仏領インド洋無人島群、太平洋ではマレーシアのサバタートルアイランド、オーストラリア、ハワイ及びメキシコ(主にクロウミガメ)において増加傾向にある(Seminoff et al. 2015)。なお、小笠原諸島では、海亀漁の強い捕獲圧により明治時代に激減した。小笠原諸島における 1978 年当時の来遊数に対する捕獲割合は 88.3%と推定されており(Kondo et al. 2017)、明治時代初期もそれに近い割合で捕獲していたとすると、当時の捕獲数から推定される明治時代初期の来遊数は 2,000 個体以上となる。一方、1970 年代に 100 個体以下にまで減少した来遊数は 2008 年には 582 個体まで回復した(Kondo et al. 2017)。これは、明治時代初期の推定来遊数の

表 1. IUCN の評価に基づくオサガメ、アカウミガメ、ヒメウミガメの個体群別絶滅危険度と個体数の現状

下位個体群/種		オサガメ			アカウミガメ			ヒメウミガメ		
種		絶滅危惧II類 (VU)	減少	Wallace et al. 2013a	絶滅危惧II類 (VU)	減少	Casale and Tucker 2017			
大西洋	北西大西洋	絶滅危惧IB類 (EN)	減少	The Northwest Atlantic Leatherback Working Group 2019	軽度懸念 (LC)	増加	Ceriani and Meylan 2017			
	北東大西洋				絶滅危惧IB類 (EN)	不明	Casale and Marco 2015			
	地中海				軽度懸念 (LC)	増加	Casale 2015a			
	南西大西洋	絶滅危惧IA類 (CR)	増加	Tiwari <i>et al</i> . 2013a	軽度懸念 (LC)	増加	Casale and Marcovaldi 2015	-		
	南東大西洋	情報不足 (DD)	不明	Tiwari <i>et al</i> . 2013b		_				
インド洋・	北西インド洋				絶滅危惧IA類 (CR)	減少	Casale 2015b	- 絶滅危惧 類		
	北東インド洋	情報不足 (DD)	不明	Tiwari et al . 2013c	絶滅危惧IA類 (CR)	不明	Casale 2015c	(VU)	減少	Abreu-Grobois and Plotkin 2008
	南西インド 洋	絶滅危惧IA類 (CR)	減少	Wallace <i>et al</i> . 2013b	準絶滅危惧 (NT)	増加	Nel and Casale 2015			
	南東インド洋				準絶滅危惧 (NT)	不明	Casale et al . 2015			
太平洋	北太平洋				軽度懸念 (LC)	増加	Casale and Matsuzawa 2015			
	南太平洋				絶滅危惧IA類 (CR)	減少	Limpus and Casale 2015			
	西太平洋	絶滅危惧IA類 (CR)								
	東太平洋	絶滅危惧IA類 (CR)	減少	Wallace et al. 2013c						

20%程度に過ぎないものの、それでも来遊数は6.8%/年の急 激な増加を示しており(Chaloupka et al. 2007)、海亀類を対 象とした漁業における資源管理が奏功している世界でも数少 ない例となっている(Kondo et al. 2017)。世界全体の産卵雌 個体数は 563,826~564,464 個体と推定されており、個体群別 の産卵雌個体数では、北大西洋が167,528個体で最も多く、続 いて南西インド洋で 91,159 個体、南西太平洋で 83,058 個体、 東インド洋・西太平洋で 77,009 個体であった (Seminoff et al. 2015)。大西洋の中央に位置する英領アセンション島でも本種 は増加傾向にあり、2010~2013年には推定23,724巣/年の 産卵があった(Weber et al. 2014)。SWOT (2012)の評価で は、絶滅が危惧されている個体群はなく、東部太平洋(主要産 卵地:ガラパゴス諸島、メキシコ)、南西部大西洋(主要産卵 地:ブラジル)、南東部インド洋(主要産卵地:オーストラリ ア)、中南部太平洋(主要産卵地:仏領ポリネシア、太平洋島 嶼国)及び中西部太平洋(主要産卵地:パラオ、グアム、ミク ロネシア連邦)の各個体群は健全と評価されている。

タイマイ産卵個体数の動向としては、カリブ海では、プエル トリコやバルバドス、メキシコ、パナマ等で増加傾向を示して いる (National Marine Fisheries Service and U.S. Fish and Wildlife Service 2013b)。南大西洋では、ブラジルで増加傾向 にある一方、アフリカ側では減少傾向を示している。インド洋 では、マダガスカルやモルディブ、セーシェル等の多くの場所 で減少傾向を示している。太平洋においても、インドネシア、 オーストラリア、パプアニューギニア等の多くの場所で減少傾 向を示しているが、インドネシアジャワ海西部の保全活動を行 っている島嶼では、1980年代のレベルまで回復している(菅 沼 未発表)。大西洋、インド洋、太平洋の年平均産卵雌個体 数はそれぞれ推定で、3,600~6,100 個体、8,200~10,200 個体、 10,200~12,800 個体とされる (National Marine Fisheries Service and U.S. Fish and Wildlife Service 2013b) . SWOT (2012) の評価では、東部大西洋(主要産卵地:コンゴ、サン トメ・プリンシペ)、東部太平洋(主要産卵地:エルサルバド ル、ニカラグア、エクアドル)、北東部インド洋(主要産卵地: インド、スリランカ、バングラデシュ)及び西部太平洋(主要 産卵地:マレーシア、インドネシア、フィリピン)の各個体群 は絶滅危惧と評価されている一方、南東部インド洋(主要産卵 地:オーストラリア)、南西部インド洋(主要産卵地:セーシ ェル、英国及びフランス海外領土)及び南西部太平洋(主要産 卵地:オーストラリア) の各個体群は健全と評価されている。 ケンプヒメウミガメは、ヒメウミガメと同様にアリバダをす ることが知られており、かつては年間産卵巣数が推定で 100,000 巣を超えていたが、1970年代~1980年代に減少した。 その後、産卵個体数は徐々に増加し、2012年に22,000巣を超 え直近10年で最多となった。その後やや減少傾向を示してい る (Bevan et al. 2016)。

ヒラタウミガメについては、本種の最大の産卵地の 1 つであるオーストラリアのドメット岬で年 3,250 個体(Whiting et al. 2009)、北部のクラブ島で年 3,000 個体(Sutherland and Sutherland 2003)、北西部のバロー島とムンダバランガーナでそれぞれ年 1,500 個体と 1,800 個体(Pendoley et al. 2014)、東部のワイルドダック島とピーク島で年 600 個体と 500 個体

が産卵していると推定されている(Limpus *et al.* 2013)。このうち、年変動が明らかにされているワイルドダック島及びピーク島では 1990 年以降の産卵雌個体数は安定している。

【海亀個体群への影響】

沿岸域から外洋域を利用している未成熟亀から成熟亀に対しての人為的な影響は、二つに大別され、漁業活動に起因する 影響と産卵地における人間活動による影響が知られている。

漁業による影響としては、世界各地で行われているはえ縄、 刺網、定置網、まき網、底びき網等による混獲が報告されてお り(Coelho et al. 2013、石原ほか 2014、Alfaro-Shigueto et al. 2018) 、一部の水域では推定混獲数を計算する試みがなさ れている。また、過去の知見に基づき、はえ縄漁業、網漁業、 曳網漁業による混獲の影響度や各種、各地域個体群サイズから 考えられる影響の大きさについて、報告がなされている (Wallace et al. 2013d) 。 当該報告では、7 種 73 地域個体群 のうち、混獲影響度が高いのは、はえ縄では4種8地域個体 群、網漁業では5種9地域個体群、曳網漁業では5種13地域 個体群とされた。また、海亀類全種のうちいずれかの地域個体 群がいずれかの漁業による影響を強く受けていることが示さ れている (Wallace et al. 2013d)。このうち外洋域では、種に よる索餌回遊水域の違いが関連する漁業の種類の違いに現れ ており、アカウミガメははえ縄、アオウミガメはまき網、ヒメ ウミガメははえ縄とまき網、オサガメははえ縄とまき網の漁業 による影響をそれぞれ受けている。また、一部地域では人間の 食料として海亀類を対象とした漁業が行われている。我が国の 漁業による海亀資源に対する定量的な影響評価には、混獲され る海亀類が由来する産卵地の情報が必要であるが、現在は非常 に限られている。そのため、混獲個体から得られた試料を基に DNA 分析による特定が試みられている。その他に、漁業によ る影響として、ゴースト・フィッシングと呼ばれる放置・投棄 された漁具に海亀類が絡まり死亡するという問題もある (Duncan et al. 2017) 。

産卵地での人間活動については人間による親亀や卵の違法な採取が特に大きな影響を与えており、一部の種や地域個体群で顕著である。それ以外の人為的要因として、照明による親亀

図3. 通常まぐろ鈎(左)とサークルフック(右)

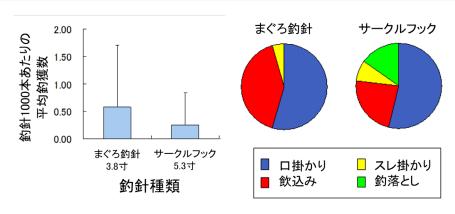


図 4. 通常まぐろ鈎とサークルフックによるアカウミガメの混獲数(左)及び鈎掛かり位置の割合(右)

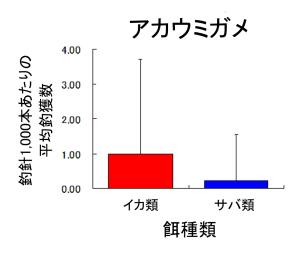


図 5. イカ餌とサバ餌によるアカウミガメの混獲数(Yokota *et al.* 2009 のデータに基づき作成)

の産卵行動や孵化稚亀の降海行動の攪乱(Dimitriadis et al. 2018)、レジャー等の人間活動、漂着物及び廃棄物による産卵阻害、堤防等の人工建造物による産卵阻害及び海岸の浸食による産卵条件の不適合等の海岸環境の悪化によって、産卵成功率の低下、孵化率の低下、孵化稚亀の降海数の減少、孵化稚亀の沖合への遊泳行動への悪影響も指摘されている(Lutcavage et al. 1997、Rizkalla and Savage 2011)。また、回遊中の影響要因として、浮遊する人工ゴミの誤飲による悪影響がある(Duncan et al. 2017)。

その他の問題として、台風や高波による卵の流失や卵の窒息死亡、高温化による孵化時期の胚死亡や孵化稚亀のメス化がみられる(Jensen et al. 2018)。また、タヌキやキツネ、アライグマ等の動物による卵や孵化稚亀の食害等も問題視されている。

【海亀類の保存管理策】

海亀資源の適切な保存管理には、上記で述べた漁業による混獲の軽減及び産卵地における人為的攪乱要因の緩和という二つの側面があり、両者の影響についてモニターしつつ包括的な管理体制を構築することが必要である。

漁業に関しては、えびトロールによる海亀類の混獲が問題と

図 6. 海亀用鈎外し器具

左:海亀用釣鈎外し。ヤットコの先端に溝を付けたもので、 その溝で鈎を挟んで外す。右:デフッカー。鈎の湾曲部を先端の円形部に通し、鈎の刺さっていない方向に押し込むよう にして外す。

なっており、米国は中南米や東南アジア諸国等の他国に対して 混獲の回避措置なしで漁獲されたエビ類の輸入規制を実施し ている。また、2001年より米国は北太平洋や北西部大西洋に おける自国のメカジキを対象としたはえ縄を規制している。は え縄による海亀類の混獲の回避策を構築するために、日本と米 国が中心となり通常のまぐろ鈎と異なるサークルフック(図3) による混獲死亡率の削減、はえ縄餌の種別混獲率の解明等を目 的とした操業試験が実施されている。特に大型のサークルフッ クは、海亀の混獲率を削減できる効果や、たとえ混獲されても、 飲み込みによる喉掛かりの割合を低くして生体へのダメージ を軽減させる効果を持っている(図4)。また、餌の種類によ っても海亀の混獲率は異なり、魚類を餌とした場合にはイカ類 を餌とした場合に比べ混獲率が約 4 分の 1 になることが確認 されている(Yokota et al. 2009) (図5)。さらに、はえ縄に より捕獲された生存海亀類について適切な保護放流ができる ように、日本では海亀用鈎外し器具の開発(図6)や漁業者に 対する啓発普及活動を実施している。また、海亀類は産卵のた め沿岸域に集結するため、定置網、刺網等の沿岸漁業による混 獲も大きな問題となっており、えびトロールの海亀混獲回避装 置 (TED) を応用して定置網における海亀混獲防止装置の開発 及び試験を行っている。地域漁業管理機関では、中西部太平洋 まぐろ類委員会 (WCPFC) 及び全米熱帯まぐろ類委員会 (IATTC) において、条約水域で浅縄操業するはえ縄漁船に対 する大型サークルフックの使用または魚餌の使用の義務付け

等を内容とする保存管理措置が採択されている。大西洋まぐろ類保存国際委員会(ICCAT)でも、大西洋のうち北緯55度以北及び南緯35度以南(西経20度以西では南緯40度以南)と地中海を除く水域を対象として、同じ内容の保存管理措置が採択されている。またWCPFC、IATTC、ICCAT及びインド洋まぐろ類委員会(IOTC)では、タモ網や釣鈎外し器具、ラインカッター等のリリース器具の携行・使用及び適切な取扱いと放流を行うことが求められている。

産卵地での人為的要因の緩和については、一部の国・地域では養浜等の保護活動が実施されているが、その活動は世界各国に多くの産卵地をもつ海亀類にとって十分であるとは言えない。また、現在においても産卵個体や卵の捕獲が行われている国や地域があり、地域住民にとっての重要な水産資源として利用されている場合もある。メキシコにおいては、1990年より海亀を対象とした漁業や採卵を禁止する等の海亀類の保護を実施し、ヒメウミガメの急増はその効果の現れであるとされている。世界的に海亀類にとって最適な産卵環境が減少している中、海岸の環境に関する定量的な情報は不足しているのが現状である。

執筆者

くろまぐろユニット くろまぐろサブユニット

水産資源研究所 水産資源研究センター 広域性資源部 まぐろ生物グループ

岡本 慶

かつお・まぐろユニット 混獲生物サブユニット 水産資源研究所 水産資源研究センター 広域性資源部 まぐろ第 4 グループ 越智 大介・上野 真太郎

参考文献

- Abreu-Grobois, A., and Plotkin, P. (IUCN SSC Marine Turtle Specialist Group). 2008. *Lepidochelys olivacea*. The IUCN red list of threatened species 2008: e.T11534A3292503. Doi: 10.2305/IUCN.UK.2008.RLTS.T11534A3292503.en
- Alfaro-Shigueto, J., Mangel, J.C., Darquea, J., Donoso, M., Baquero, A., Doherty, P.D., and Godley, B.J. 2018. Untangling the impacts of nets in the southeastern Pacific: Rapid assessment of marine turtle bycatch to set conservation priorities in small-scale fisheries. Fish. Res., 206: 185-192.
- Avens, L., Taylor, J.C., Goshe, L., Jones, T., and Hastings, M. 2009. Use of skeletochronological analysis to estimate the age of leatherback sea turtles *Dermochelys coriacea* in the western North Atlantic. Endang. Species. Res., 8: 165-177.
- Avens, L., and Snover, M.L. 2013. Age and age estimation in sea turtles. *In* Wyneken, J., Lohman, K.J. and Musick, J.A. (eds.), The biology of sea turtles volume III. CRC Press, Boca Raton. 97-133 pp.

Avens, L., Ramirez, M.D., Goshe, L.R., Clark, J.M., Meylan,

- A.B., Teas, W., Shaver, D.J., Godfrey, M.H., and Howell, L. 2021. Hawksbill sea turtle life-stage durations, somatic growth patterns, and age at maturation. Endang. Species Res., 45: 127-145. Doi: 10.3354/esr01123
- Ballestero, J., Arauz, R.M., and Rojas, R. 2000. Management, conservation, and sustained use of olive ridley sea turtle eggs (*Lepidochelys olivacea*) in the Ostional Wildlife Refuge, Costa Rica: An 11 year review. *In* Abreu-Grobois, F.A., Briseño-Dueñas, R., Márquez-Millán, R., and Sarti-Martínez, L. (comps.), Proceedings of the 18th International Symposium on Sea turtle Biology and Conservation. 4-5 pp.
- Bell, I., and Pike, D.A. 2012. Somatic growth rates of hawksbill turtles *Eretmochelys imbricata* in a northern Great Barrier Reef foraging area. Mar. Ecol. Prog. Ser., 446: 275-283.
- Bevan, E., Wibbels, T., Najera, B.M.Z., Sarti, L., Martinez, F.I., Cuevas, J.M., Gallaway, B.J., Pena, L.J., and Burchfield, P.M. 2016. Estimating the historic size and current status of the Kemp's ridley sea turtle (*Lepidochelys kempii*) population. Ecosphere, 7(3): e01244. Doi: 10.1002/ecs2.1244
- Bjorndal, K.A. 2003. Roles of loggerhead sea turtles in marine ecosystems. *In* Bolten, A.B. and Witherington, B.E. (eds.), Loggerhead sea turtles. Smithsonian Books, Washington. 235-254 pp.
- Bjorndal, K.A., and Bolten, A.B. 1988a. Growth rates of immature green turtles, *Chelonia mydas*, on feeding grounds in the southern Bahamas. Copeia, 1988: 555-564.
- Bjorndal, K.A., and Bolten, A.B. 1988b. Growth rates of juvenile loggerheads, *Caretta caretta*, in the Southern Bahamas. J. Herpetol., 22: 480-482.
- Bjorndal, K.A., Parsons, J., Mustin, W., and Bolten, A.B. 2013. Threshold to maturity in a long-lived reptile: interactions of age, size, and growth. Mar. Biol., 160: 607-616.
- Bleakney, J.S. 1965. Report of marine turtles from New England and eastern Canada. Can. Field Nat., 79: 120-128.
- Bowen, B.W., Nelson, W.S., and Avise, J.C. 1993. A molecular phylogeny for marine turtles: Trait mapping, rate assessment and conservation relevance. Proc. Natl. Acad. Sci. USA., 90: 5574-5577.
- Braun-McNeill, J., Epperly, S.P., Avens, L., Snover, M.L., and Taylor, J.C. 2008. Growth rates of loggerhead sea turtles (*Caretta caretta*) from the Western North Atlantic. Herpetol. Conserv. Biol., 3: 273-281.
- Briscoe, D.K., Parker, D.M., Bograd, S., Hazen, E., Scales, K., Balazs, G.H., Kurita, M., Saito, T., Okamoto, H., Rice, M., Polovina, J.J., and Crowder, L.B. 2016. Multi-year tracking reveals extensive pelagic phase of juvenile loggerhead sea turtles in the North Pacific. Mov. Ecol., 4: 23.
- Casale, P. 2015a. *Caretta caretta* (Mediterranean subpopulation). The IUCN red list of threatened species

- 2015: e.T83644804A83646294. Doi: 10.2305/IUCN.UK.2015-4.RLTS.T83644804A83646294.en
- Casale, P. 2015b. *Caretta caretta* (North West Indian Ocean subpopulation). The IUCN red list of threatened species 2015: e.T84127873A84127992. Doi: 10.2305/IUCN.UK.2015-4.RLTS.T84127873A84127992.en
- Casale, P. 2015c. *Caretta caretta* (North East Indian Ocean subpopulation). The IUCN red list of threatened species 2015: e.T84126444A84126520. Doi: 10.2305/IUCN.UK.2015-4.RLTS.T84126444A84126520.en
- Casale, P., and Margaritoulis, D. 2010. Sea Turtles in the Mediterranean: distribution, threats and conservation priorities. IUCN, Gland, Switzerland. 294 pp.
- Casale, P., and Marco, A. 2015. *Caretta caretta* (North East Atlantic subpopulation). The IUCN red list of threatened species 2015: e.T83776383A83776554. Doi: 10.2305/IUCN.UK.2015-4.RLTS.T83776383A83776554.en
- Casale, P., and Marcovaldi, M. 2015. *Caretta caretta* (South West Atlantic subpopulation). The IUCN red list of threatened species 2015: e.T84191235A84191397. Doi: 10.2305/IUCN.UK.2015-4.RLTS.T84191235A84191397.en
- Casale, P., and Matsuzawa, Y. 2015. *Caretta caretta* (North Pacific subpopulation). The IUCN red list of threatened species 2015: e.T83652278A83652322. Doi: 10.2305/IUCN.UK.2015-4.RLTS.T83652278A83652322.en
- Casale, P., Riskas, K., Tucker, A.D., and Hamann, M. 2015. Caretta caretta (South East Indian Ocean subpopulation). The IUCN red list of threatened species 2015: e.T84189617A84189662. Doi: 10.2305/IUCN.UK.2015-4.RLTS.T84189617A84189662.en
- Casale, P., and Tucker, A.D. 2017. *Caretta caretta* (amended version of 2015 assessment). The IUCN Red List of Threatened Species 2017: e.T3897A119333622. https://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T3897A119333622.en.
- Ceriani, S.A., and Meylan, A.B. 2017. *Caretta caretta* (North West Atlantic subpopulation). (amended version published in 2015) The IUCN red list of threatened species 2017: e.T84131194A119339029. Doi: 10.2305/IUCN.UK.2017-
 - 2.RLTS.T84131194A119339029.en
- Chaloupka, M., Bjorndal, K.A., Balazs, G.H., Bolten, A.B., Ehrhart, L.M., Limpus, C.J., Suganuma, H., Troëng, S., and Yamaguchi, M. 2007. Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Glob. Ecol. Biogeogr., 17: 297-304.
- Chapman, R., and Seminoff, J.A. 2016. Status of loggerhead turtles (*Caretta caretta*) within nations of the Inter-American Convention for the protection and conservation of sea turtles. Inter-American Convention for the Protection and Conservation of Sea Turtles (IAC), Technical Document CIT-CC13-2016-Tec.13. 46 pp.

- Coelho, R., Fernandez-Carvalho, J., and Santos, M.S. 2013. A review of fisheries with the ICCAT convention area that interact with sea turtles. Collect. Vol. Sci. Pap. ICCAT, 69: 1788-1827.
- Daley, B.D., Griggs, P., and Marsh, H. 2008. Exploiting marine wildlife in Queensland: The commercial dugong and marine turtle fisheries, 1847-1969. Aust. Econ. Rev., 48: 227-265.
- D'Cruze, N., Alcock, R., and Donnelly, M. 2015. The Cayman turtle farm: Why we can't have our green turtle and eat it too. J. Agr. Environ. Ethic., 28: 57-66.
- Dimitriadis, C., Fournari-Konstantinidou, I., Sourbes, L., Koutsoubas, D., and Mazaris, A.D. 2018. Reduction of sea turtle population recruitment caused by nightlight: Evidence from the Mediterranean region. Ocean Coast, Manage., 153: 108-115. Doi: 10.1016/j.ocecoaman.2017.12.013
- Duncan, E.M., Boterelli, L.R., Broderick, A.C., Galloway, T., Lindeque, P.K., Nuno, A., and Godley, B.J. 2017. A global review of marine turtle entanglement in anthropogenic debris: a baseline for further action. Endang. Species. Res., 34: 431-448. Doi: 10.3354/esr00865
- Eckert, K.L., Wallace, B.P., Frazier, J.G., Eckert, S.A., and Pritchard, P.C.H. 2012. Synopsis of the biological data on the leatherback sea turtle (*Dermochelys coriacea*). U.S. Department of Interior, Fish and Wildlife Service, Biological Technical Publication BTP-R4015-2012, Washington, D.C. 158 pp.
- Eckert, K.L. and Eckert, A.E. 2019. An atlas of sea turtle nesting habitat for the wider Caribbean region revised edition. WIDECAST Technical Report No. 19. Godfrey, Illinois. 232 pp.
- 藤井弘章. 2012. 民俗―ヒトとウミガメの関係史. *In* 亀崎直樹 (編), ウミガメの自然史―産卵と回遊の生物学. 東京大学 出版会, 東京. 255-279 pp.
- 藤井弘章. 2016. 宮崎県・大分県のウミガメの民俗. 民俗文化, 28: 69-241.
- Fussy, A., Pommier, P., Lumbroso, C., and de Haro, L. 2007. Chelonitoxism: New case reports in French Polynesia and review of the literature. Toxicon, 49: 827-832.
- Gago, P.T., Valverde, R., Orrego, C.M., Gutiérrez, L., Salazar, H., Spotila, J., Romero, L., García, W., Ríos, A., Toruño, C., Espinoza, A., Sánchez, O., Orozco, J., Gutiérrez, W., Mairena, D., Rodríguez, M., and Urteaga, J. 2012. Establishment of arribada censusing methodology at olive ridley (*Lepidochelys olivacea*) Nicaraguan rookeries. *In* Jones, T.T. and Wallace, B.P. (comps.), Proceedings of the thirty-first annual symposium on sea turtle biology and conservation. NOAA Technical Memorandum NMFS-SEFSC-631. 219-220 pp.
- Groombridge, B, Kamraji, A.M., and Rao, A.L. 1988. Marine turtles in Baluchistan (Pakistan). Marine turtle newsletter,

42: 1-2.

- 畑瀬英男. 2013. ウミガメ類の回遊生態と生活史に関する研究. 日本水産学会誌, 79:634-637.
- Hatase, H., Takai, N., Matsuzawa, Y., Sakamoto, W., Omuta, K., Goto, K., Arai, N., and Fujiwara, T. 2002. Size-related differences in feeding habitat use of adult female loggerhead turtles *Caretta caretta* around Japan determined by stable isotope analysis and satellite telemetry. Mar. Ecol. Prog. Ser., 233: 273-281.
- Hatase, H., Sato, K., Yamaguchi, M., Takahashi, K., and Tsukamoto, K. 2006. Individual variation in feeding habitat use by adult female green sea turtles (*Chelonia mydas*): are they obligately neritic herbivores? Oecologia, 149: 52-64.
- Hawkes, L.A., McGowan, A., Broderick, A.C., Gore, S.,
 Wheatley, D., White, J., Witt, M.J., and Godley, B.J. 2014.
 High rates of growth recorded for hawksbill sea turtles in
 Anegada, British Virgin Islands. Ecol. Evol., 4: 1255-1266.
- 石原 孝. 2012. 生活史一成長と生活場所. *In* 亀崎直樹(編), ウミガメの自然誌一産卵と回遊の生物学. 東京大学出版会, 東京. 57-83 pp.
- 石原 孝・亀崎直樹・松沢慶将・石崎明日香. 2014. 漁業者への間き取り調査から見る日本の沿岸漁業とウミガメの関係. 野生生物と社会, 2: 23-35.
- Jensen, M.P., Allen, C.D., Eguchi, T., Bell, I.P., LaCasella, E.L., Hilton, W.A., Hoff, C.A.M., and Dutton, P.H. 2018. Environmental warming and feminization of one of the largest sea turtle populations in the world. Curr. Biol., 28: 154-159. Doi: 10.1016/j.cub.2017.11.057
- Kaplan, I.C. 2005. A risk assessment for Pacific leatherback turtles (*Dermochelys coriacea*). Can. J. Fish. Aquat. Sci., 62: 1710-1719.
- Kirschner, R.I., and Jacobitz, K.L. 2011. Multiple fatalities following ingestion of sea turtle meat. NACCT Congress-September 23-26, Poster session III 169, Washington DC.
- Kondo, S., Morimoto, Y., Sato, T., and Suganuma, H. 2017.
 Factors affecting the long-term population dynamics of green turtles (*Chelonia mydas*) in Ogasawara, Japan:
 Influence of natural and artificial production of hatchlings and harvest pressure. Chelonian Conserv. Biol., 16: 83-92.
- León, Y.M., and Diez, C.E. 1999. Population structure of hawksbill turtles on a foraging ground in the Dominican Republic. Chelonian Conserv. Biol., 3: 230-236.
- Liew, H.C. 2011. Tragedy of the Malaysian leatherback population: what went wrong. *In* Dutton, P.H., Squires, D., and Mahfuzuddin, A. (eds.), Conservation and sustainable management of sea turtles in the Pacific Ocean. University of Hawaii Press, Hawaii. 97-106 pp.
- Limpus, C.J. 1980. The green turtle, *Chelonia mydas* (L) in eastern Australia. *In* Management of turtle resources (ed.), Research Monograph 1. James Cook University, Queensland. 5-22 pp.

- Limpus, C.J. 1992. The hawksbill turtle, *Eretmochelys imbricata*, in Queensland: population structure within a southern Great Barrier Reef ground. Wildlife Res., 19: 489-506
- Limpus, C.J., Parmenter, C.J., and Chaloupka, M. 2013.

 Monitoring of coastal sea turtles: gap analysis. 5. Flatback turtles, *Natator depressus*, in the Port Curtis and Port Alma region. Report produced for the Ecosystem Research and Monitoring Program Advisory Panel as part of Gladstone Ports Corporation's Ecosystem Research and Monitoring Program. 26 pp.
- https://studyres.com/doc/606991/monitoring-of-coastal-sea-turtles--gap-analysis-5.-flatba... (2022 年 11 月 2 日)
- Limpus, C., and Casale, P. 2015. *Caretta caretta* (South Pacific subpopulation). The IUCN red list of threatened species 2015: e.T84156809A84156890. Doi: 10.2305/IUCN.UK.2015-4.RLTS.T84156809A84156890.en
- Lutcavage, M.E., Plotkin, P., Witherington, B., and Lutz, P.L. 1997. Human impacts on sea turtle survival. *In* Lutz, P.L. and Musick, J.A. (eds.), The biology of sea turtles. CRC Press, Boca Raton, Florida. 387-409 pp.
- Mack, D., Duplaix, N., and Wells, S. 1982. Sea turtles, animals of divisible parts: International trade in sea turtle products. *In* Bjorndal, K.A. (ed.), Biology and conservation of sea turtles. Smithsonian Institution Press, Washington, D.C. 545-562 pp.
- Marco, A., Abella, E., Liria-Loza, A., Martins, S., López, O., Jiménez-Bordón, S., Medina, M., Oujo, C., Gaona, P., Godley, B.J., and López-Jurado, L.F. 2012. Abundance and exploitation of loggerhead turtles nesting in Boa Vista island, Cape Verde: the only substantial rookery in the eastern Atlantic. Anim. Conserv., 15: 351-360.
- Marquez-M., R. 1990. FAO species catalog. Vol. 11. Sea turtles of the world. An annotated and illustrated catalogue of sea turtle species known to date. FAO Fisheries Synopsis. No. 125, Vol. 11. FAO, Rome. 81 pp.
- 松沢慶将(編).2016. 日本ウミガメ誌 2016. 日本ウミガメ協議会, 大阪.70 pp.
- Mbaé, S.B.A., Mlindassé, M., Mihidjaé, S., and Seyler, T. 2016. Food-poisoning outbreak and fatality following ingestion of sea turtle meat in the rural community of Ndrondroni, Mohéli island, Comoros, December 2012. Toxicon, 120: 38-41.
- Metcalfe, K., Agamboué, P.D., Augowet, E., Boussamba, F., Cardiec, F., Fay, J.M., Formia, A., Kema Kema, J.R., Kouerey, C., Koumba Mabert, B.D., Maxwell, S.M., Minton, G., Mounguengui Mounguengui, G.A., Moussounda, C., Moukoumou, N., Churley Manfoumbi, J., Megne Nguema, A., Nzegoue, J., Parnell, R.J., du Plessis, P., Sounguet, G.P., Tilley, D., Verhage, S., Viljoen, W., White, L., Witt, M.J., and Godley, B.J. 2015. Going the extra mile: ground-based monitoring of olive ridley turtles reveals Gabon hosts the

- largest rookery in the Atlantic. Biol. Conserv., 190: 14-22.
- Mortimer, J.A., and Donnelly, M. 2008. *Eretmochelys imbricata*. The IUCN red list of threatened species 2008: e.T8005A12881238.
 - 10.2305/IUCN.UK.2008.RLTS.T8005A12881238.en
- National Marine Fisheries Service and U.S. Fish and Wildlife Service. 2013a. Leatherback sea turtle (*Dermochelys coriacea*) 5-year review: Summary and evaluation. National Marine Fisheries Service, Silver Spring, Maryland and U.S. Fish and Wildlife Service Jacksonville, Florida. 89 pp.
- National Marine Fisheries Service and U.S. Fish and Wildlife Service. 2013b. Hawksbill sea turtle (*Eretmochelys imbricata*) 5-year review: Summary and evaluation. National Marine Fisheries Service, Silver Spring, Maryland, and U.S. Fish and Wildlife Service Jacksonville, Florida. 87 pp.
- Nel, R., and Casale, P. 2015. *Caretta caretta* (South West Indian Ocean subpopulation). The IUCN red list of threatened species 2015: e.T84199475A84199755. Doi: 10.2305/IUCN.UK.2015-4.RLTS.T84199475A84199755.en
- 日本爬虫両棲類学会. 2023. 日本産爬虫両生類標準和名リスト (2023 年 9 月 8 日版). http://herpetology.jp/wamei/ (2023 年 10 月 26 日).
- Okamoto, K., and Kamezaki, N. 2014. Morphological variation in *Chelonia mydas* (Linnaeus, 1758) from the coastal water of Japan, with special reference to the turtle allied to *Chelonia mydas agassizii*, Bocourt, 1868. Current herpetology, 33: 46-56.
- Parsons, J. 1962. The Green Turtle and Man. University of Florida Press. Gainesville, Florida. 126 pp.
- Pendoley, K.L., Bell, C.D., McCracken, R., Ball, K.R., Sherborne, J., Oates, J.E., Becker, P., Vitenbergs, A., and Whittock, P.A. 2014. Reproductive biology of the flatback turtle *Natator depressus* in Western Australia. Endanger. Species Res., 23: 115-123.
- Petitet, R., Avens, L., Castilhos, J.C., Kinas, P.G., and Bugoni, L. 2015. Age and growth of olive ridley sea turtles *Lepidochelys olivacea* in the main Brazilian nesting ground. Mar. Ecol. Prog. Ser., 541: 205-218.
- Prince, PIT. 1998. Marine turtle conservation: the links between populations in western Australia and the northern Australian region people and turtles. *In* Kennett, R., Webb, A., Duff, G., Guinea, M., and Hill, G. (eds.), Marine turtle conservation and management in northern Australia. Proceedings of a workshop held at the Northern Territory University, Darwin, 3-4 June 1997, Centre for indigenous natural and cultural resource management & Centre for tropical wetlands management, Northern Territory University, Darwin. 93-99 pp.
- Pritchard, P.C.H., Bacon, P., Berry, F., Carr, A., Fletemeyer, J., Gallagher, R., Hopkins, S., Lankford, R., Marquez-M., R.,

- Ogren, L., Pringle, W. Jr., and Witham, R. 1983. Manual of sea turtle research and conservation. Techniques. Second Edition. *In* Bjorndal, K.A. and Balazs, G.H. (eds.), Center for environmental education. Washington D.C. 1-126 pp.
- Pritchard, P.C.H., and Trebbau, P. 1984. The turtle of Venezuela. Society for the Study of Amphibians and Reptiles, Ithaca, New York. 414 pp.
- Rizkalla, C.E., and Savage, A. 2011. Impact of seawalls on loggerhead sea turtle (*Caretta caretta*) nesting and hatching success. J. Coastal Res., 27: 166-173.
- Schillinger, G.L., and Bailey, H. 2015. Movements and behavior of adult and juvenile leatherback turtles. *In* Spotila, J.R. and Tomillo, P.S. (eds.), The leatherback turtle: biology and conservation. Johns Hopkins University Press, Maryland. 162-172 pp.
- Seminoff, J., and the Green Turtle Task Force. 2004. Green turtle (*Chelonia mydas*), red list assessment. Marine Turtle Specialist Group, the World Conservation Union (IUCN). 34 pp.
- Seminoff, J.A., Allen, C.D., Balazs, G.H., Dutton, P.H., Eguchi, T., Haas, H.L., Hargrove, S.A., Jensen, M.P., Klemm, D.L., Lauritsen, A.M., MacPherson, S.L., Opay, P., Possardt, E.E., Pultz, S.L., Seney, E.E., Van Houtan, K.S., and Waples, R.S. 2015. Status review of the green turtle (*Chelonia mydas*) under the U.S. endangered species act. NOAA Technical Memorandum, NOAA-NMFS-SWFSC-539. 571 pp.
- Spotila, J.R. 2004. Sea turtles. The Johns Hopkins University Press, Baltimore and London. 1-227 pp.
- Sutherland, R.W., and Sutherland, E.G. 2003. Status of the flatback turtle (*Natator depressus*) rookery on Crab Island, Australia, with notes on predation by crocodiles. Chelonian Conserv. Biol., 4: 612-619.
- Swingle, W.M., Warmolts, D.I., Keinath, J.A., and Musick, J.A. 1993. Exceptional growth rates of captive loggerhead sea turtles, *Caretta caretta*. Zoo Biol., 12: 491-497.
- SWOT. 2012. The world's most (and least) threatened sea turtles. SWOT report volume VII. 48 pp.
- The Northwest Atlantic Leatherback Working Group. 2019.

 Dermochelys coriacea (Northwest Atlantic Ocean subpopulation). The IUCN red list of threatened species 2019: e.T46967827A83327767. Doi: 10.2305/IUCN.UK.2019-2.RLTS.T46967827A83327767.en
- The San Diego Union. 1990. Legal briefs-Mexico City. Marine turtle newsletter, 50: 23.
- Tiwari, M., Wallace, B.P., and Girondot, M. 2013a. Dermochelys coriacea (Southwest Atlantic Ocean subpopulation). The IUCN red list of threatened species 2013: e.T46967838A46967842. Doi: 10.2305/IUCN.UK.2013-2.RLTS.T46967838A46967842.en
- Tiwari, M., Wallace, B.P., and Girondot, M. 2013b. *Dermochelys coriacea* (Southeast Atlantic Ocean subpopulation). The IUCN red list of threatened species

- 2013: e.T46967848A46967852. Doi: 10.2305/IUCN.UK.2013-2.RLTS.T46967848A46967852.en
- Tiwari, M., Wallace, B.P., and Girondot, M. 2013c. Dermochelys coriacea (Northeast Indian Ocean subpopulation). The IUCN red list of threatened species 2013: e.T46967873A46967877. Doi: 10.2305/IUCN.UK.2013-2.RLTS.T46967873A46967877.en
- Tiwari, M., Wallace, B.P., and Girondot, M. 2013d. Dermochelys coriacea (West Pacific Ocean subpopulation). The IUCN red list of threatened species 2013: e.T46967817A46967821. Doi: 10.2305/IUCN.UK.2013-2.RLTS.T46967817A46967821.en
- Tomaszewicz, C.N.T., Seminoff, J.A., Avens, L., Goshe, L.R., Peckham, S.H., Rguez-Baron, J.M., Bickerman, K., and Kurle, C.M. 2015. Age and residency duration of loggerhead turtles at a North Pacific bycatch hotspot using skeletochronology. Biol. Conserv., 186: 134-142. Doi:10.1016/j.biocon.2015.03.015
- Valverde, R.A., Orrego, C.M., Tordoir, M.T., Gómez, F.M., Solís, D.S., Hernández, R.A., Gómez, G.B., Brenes, L.S., Baltodano, J.P., Fonseca, L.G., and Spotila, J.R. 2012. Olive ridley mass nesting ecology and egg harvest at Ostional Beach, Costa Rica. Chelonian Conserv. Biol., 11: 1-11.
- Wallace, B.P., Tiwari, M., and Girondot, M. 2013a. *Dermochelys coriacea*. The IUCN Red List of Threatened Species 2013: e.T6494A43526147. https://dx.doi.org/10.2305/IUCN.UK.2013- 2.RLTS.T6494A43526147.en. (2023 年 11 月 7 日).
- Wallace, B.P., Tiwari, M., and Girondot, M. 2013b. Dermochelys coriacea (Southwest Indian Ocean subpopulation). The IUCN red list of threatened species 2013: e.T46967863A46967866. Doi: 10.2305/IUCN.UK.2013-2.RLTS.T46967863A46967866.en
- Wallace, B.P., Tiwari, M., and Girondot, M. 2013c. Dermochelys coriacea (East Pacific Ocean subpopulation). The IUCN red list of threatened species 2013: e.T46967807A46967809. Doi: 10.2305/IUCN.UK.2013-2.RLTS.T46967807A46967809.en
- Wallace, B.P., Kot, C.Y., DiMatteo, A.D., Lee, T., Crowder, L.B., and Lewison, R.L. 2013d. Impacts of fisheries bycatch

- on marine turtle populations worldwide: toward conservation and research priorities. Ecosphere 4.
- Weber, S.B., Weber, N., Ellick, J., Avery, A., Frauenstein, R., Godley, B.J., and Broderick, A.C. 2014. Recovery of the South Atlantic's largest green turtle nesting population. Biodivers. Conserv., 23: 3005-3018.
- Whiting, A.U., Thomsoni, A., Chaloupka, M., and Limpus, C.J. 2009. Seasonality, abundance and breeding biology of one of the largest populations of nesting flatback turtles, *Natator depressus*: Cape Domett, Western Australia. Aust. J. Zool., 56: 297-303.
- Witherington, B., Willson, A., Baldwin, R., Al-Kiyumi, A., Al Harth, S., Al Blooshi, A., and Possardt, E. 2015. Comparison of recent and historical surveys of nesting by loggerhead turtles on beaches of Masirah island, Sultanate of Oman. *In* Kaska, Y., Sonmez, B., Turkecan, O., and Sezgin, C. (comps.), Book of abstracts of 35th Annual Symposium on Sea Turtle Biology and Conservation. MACART press, Turkey. 108 p.
- Witt, M.J., Baert, B., Broderick, A.C., Formia, A., Fretey, J., Gibudi, A., Mounguengui, G.A.M., Moussounda, C., Ngouessono, S., Parnell, R.J., Roumet, D., Sounguet, G., Verhage, B., Zogo, A., and Godley, B.J. 2009
- Aerial surveying of the world's largest leatherback turtle rookery: A more effective methodology for large-scale monitoring. Biol. Conserv., 142: 1719-1727.
- Yokota, K., Kiyota, M., and Okamura, H. 2009. Effect of bait species and color on sea turtle bycatch and fish catch in a pelagic longline fishery. Fish. Res., 97: 53-58.
- Zárate, P.M., Bjorndal, K.A., Seminoff, J.A., Dutton, P.H., and Bolten, A.B. 2015. Somatic growth rates of green turtles (*Chelonia mydas*) and hawksbills (*Eretmochelys imbricata*) in the Galápagos Islands. J. Herpetol., 49: 641-648
- Zug, G.R., Wynn, A.H., and Ruckdeschel, C. 1986. Age determination of loggerhead sea turtles, *Caretta caretta*, by incremental growth marks in the skeleton. Smithsonian Contributions to Zoology No. 427. Smithsonian Institution Press, Washington. 34 pp.