ミナミマグロ

(Southern bluefin tuna Thunnus maccovii)

管理・関係機関

【管理・関係機関】

みなみまぐろ保存委員会(CCSBT) 大西洋まぐろ類保存国際委員会(ICCAT) インド洋まぐろ類委員会(IOTC) 中西部太平洋まぐろ類委員会(WCPFC)

【ミナミマグロの国際的管理の経緯】

ミナミマグロの国際的な管理は、1982年に日本、オーストラリア及びニュージーランドにより組織された三国間会議で始まった(西田 1994)。1985年からは科学者会合での議論をもとに各国の漁獲割当量が決められることになり、1989年にはこれら三国のそれまでの漁獲実績を下回る漁獲枠が設定された。その後、1994年に「みなみまぐろの保存のための条約」が発効され、三国間会議を公式化する形でみなみまぐろ保存委員会(CCSBT)が設立された。現在の CCSBT メンバーは、日本、オーストラリア、ニュージーランド、韓国、台湾、インドネシア、EU、南アフリカである(ただし、台湾及び EU は拡大委員会に加盟)。フィリピンは 2004年から協力的非加盟国として委員会に受け入れられてきたが、2015年以降、年次会合への参加がないこと、2016年からは国別年次報告書の提出もないことから、現在は協力的非加盟国と認められていない。

最近の動き

CCSBT は第30回年次会合(2023年10月)において、2024~2026年漁期の総漁獲可能量(TAC)を毎年20,647トンとすることに合意した(CCSBT 2023b)。このTACは2024~2026年漁期に対して、管理方式(事前に定められた方式により、漁獲データ等の資源指標からTACを自動的に計算する漁獲制御ルール。詳細は後述。)による計算結果から科学委員会が勧告したものである。現在の親魚資源量は最大持続生産量(MSY)を産出する資源水準の約85%の水準にある(CCSBT 2023a)。管理方式を用いた管理によって資源状態には継続的な改善が見られており、管理目標に向けて順調に回復していると思われる。2022年の報告総漁獲量は17,134トンで、主にはえ縄及びまき網漁業によるものであった。

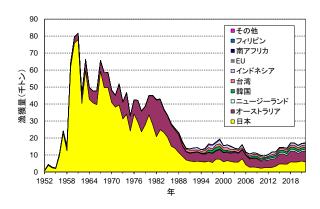


図 1. ミナミマグロの国・地域別漁獲量の推移 (1952~2022 年、 CCSBT 2023a)

利用・用途

ほぼ全てが日本での刺身や寿司用途に用いられている。

漁業の概要

公海域では主に日本、台湾、韓国が漁獲し、沿岸域ではオーストラリア、ニュージーランド、インドネシア、南アフリカが漁獲している(図 1)。現在用いられている漁法は、主にはえ縄とまき網である。はえ縄漁業は 3歳以上の小型~大型魚を漁獲している。まき網漁業は畜養用種苗を得るためにオーストラリアのみが行っており、2~4歳を中心とした小型魚を漁獲している。現在の主な漁場は、はえ縄では南アフリカ沖、インド洋南東海域、ミナミマグロの産卵場であるインドネシア南沖海域、タスマニア島周辺海域及びニュージーランド周辺海域であり、まき網ではオーストラリア大湾である(図 2)。

ミナミマグロ漁業の歴史は、1920 年代にオーストラリアが東部沿岸で行っていた小規模なひき縄漁まで遡る (Hobsbawn et al. 2023)。本格的な商業漁業は、1950 年代初期、インドネシア近海の産卵場での日本船によるはえ縄操業により始まった (新宮 1970)。日本船の漁獲量は1961 年には最高の77,900トンに達した。その後、日本のはえ縄船は肉質の良い魚を求めて索餌域である西風皮流域(南緯35~45度の海域)へと漁場を移し、1971 年からは資源保護のため、産卵場及び小型魚が多獲される海域での操業を自粛している (新宮 1978)。これら自粛の影響もあり、日本のはえ縄船の漁獲量は1961 年以降

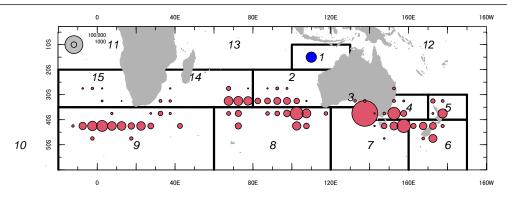


図 2. ミナミマグロの緯経度 5 度区画別の漁獲尾数

2022 年暫定値。 $1\sim15$ は CCSBT 統計海区。1 海区の青丸はインドネシアによる位置不明の漁獲尾数。 CCSBT 事務局から配布されたデータを基に作図。

漸減し、1985年には約20,000トンまで減少した。ニュージー ランド、台湾、インドネシアによるはえ縄漁業は1980年代か ら、韓国のはえ縄漁業は 1990 年代から始まり、1999 年には それらの漁獲量は合計で6,000トン近くまで達したが、その後 は 2,000~5,000 トンの間で推移している (CCSBT 2023a)。 はえ縄漁業全体の漁獲量は、TAC によって 1989~2005 年は 8,000~14,000 トンの間で維持されたが、2007 年漁期以降に TAC を削減したことで減少し、2011 年までは約5,000~7,000 トンで推移した。2012年からは資源状態の改善による TAC の 増加に伴い、はえ縄漁業の漁獲量は徐々に増加している。一方、 当初は缶詰用だったオーストラリアの漁獲は、主要漁法が竿釣 りからまき網へと移り変わるとともに漁獲量が次第に増加し、 1982年には21,500トンに達したが、その後、自主規制及び産 業の衰退により減少した。しかし、1990年代半ばより畜養技 術の発達に伴い、種苗を得るためまき網による漁獲が再び増加 し、近年は約5,000~6,000トン程度で推移している。種苗は 生簀で約3~6か月間畜養された後、ほぼ全量の年間6,000~ 10,000 トン程度が日本へ輸出されている。

CCSBTでは設立以降、2000年代半ばまで約15,000トンのTACを維持してきたが、資源状態の悪化を受け、2007年漁期から2011年漁期にかけて約9,500トン(日本は約2,500トン)にまでTACを削減した(CCSBT 2006、2009)。その後、これらの漁獲圧削減や加入増加等の効果により資源状態の好転が見られ、2012~2014年漁期より段階的にTACを増枠し、2024~2026年漁期のTACは毎年20,647トン(2024年漁期、日本は7,247トン)で合意された(CCSBT 2023b)。なお、2022年の報告総漁獲量は17,134トンであった(CCSBT 2023a)。

生物学的特性

【分布・回遊】

ミナミマグロの産卵場は、インド洋東部のインドネシア南岸とオーストラリア北西岸で囲まれた扇形水域(東経 $100\sim125$ 度、南緯 $10\sim20$ 度)のみで仔稚魚が採集されていることから、この海域にあると考えられている(西川ほか 1985)(図 3)。また、形態的(岩井ほか 1965、新宮・藁科 1965)及び遺伝的(Grewe et al. 1997)に地理的変異が見られないため、単一系群とされている。幼魚はオーストラリア西岸沖を南下したのち、オーストラリア南岸沖を東へ移動すると考えられているが

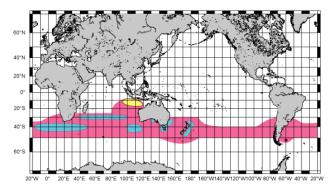


図3. ミナミマグロの分布(赤)、漁場(青)、産卵場(黄)

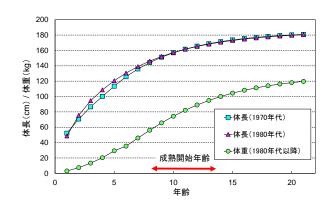
(Caton 1994、西田 1994)、一部の若齢魚は南アフリカ沖でも見られる(Farley et al. 2007)。標識放流調査により、オーストラリア南岸の若齢魚はインド洋中央部や南アフリカ沖に季節回遊することがわかっている(Takahashi et al. 2004、Patterson et al. 2018)。その後、成長に伴い次第に南緯35~45度の西風皮流域全体に広く分布、回遊するようになる(新宮 1978、Caton 1994)。ただし、東太平洋で見られることは稀である。

【成長・成熟】

ミナミマグロは体長(尾叉長)200 cm、体重 150 kg に達する(新宮 1978)。漁獲個体の最大報告体長は 210 cm で、寿命は少なくとも 25歳以上と考えられる。耳石の年齢査定から得られている最高齢は 45歳である。成熟開始体長は約 150 cm (年齢は約 8歳に相当)であるが、産卵魚の多くは 15~25歳魚が占める(Farley et al. 2007)。産卵期は 9 月から翌年 4 月までの約半年間に及ぶ(Farley and Davis 1998)。1 回の産卵数は体重 1 kg 当たり 5.7 万粒で、産卵雌個体はほぼ毎日産卵する。ポップアップアーカイバルタグを用いた標識放流調査の結果から、本種の成熟魚は必ずしも毎年産卵するわけではないと考えられている(Evans et al. 2012)。現在、CCSBT 科学委員会の資源評価では、8歳、12歳、16歳でそれぞれ 5%、50%、95%の個体が成熟しているという S 字状の成熟曲線を仮定して解析を行っている(Hillary et al. 2013)。

成長式は耳石の年齢査定、漁獲物の体長頻度データ、標識放 流調査の結果を統合して推定されている(Eveson 2011)。ミ ナミマグロには、若齢魚から成魚への移行期に成長過程の変化が見られるため(Hearn and Polacheck 2003)、CCSBT 科学委員会では、von Bertalanffy モデルに移行期の成長変化を考慮した成長式が用いられている。また、若齢期の成長が 1970年代以前に比べて 1980年代以降に早くなったと考えられており(Hearn and Polacheck 2003)、成長式は $1950\sim2000$ 年代の 10年ごとの年級群に対して推定されている。体長と体重の関係はいくつか推定されているが、科学委員会では日本のはえ縄漁獲物に対して、以下の式から体重を求めている(体長と体重の単位はそれぞれ cm と kg である)。

130 cm 未満の魚 体重= 0.0000313088×体長 ^{2.9058} 130 cm 以上の魚 体重= 1.15×0.000002942×体長 ^{3.3438} こうして得られた年齢別の体長と体重の関係を図 4 及び表 1 に示した。


【捕食・被食関係】

胃内容物分析から、オーストラリア沿岸域に分布する $1\sim2$ 歳魚は主に魚類を(Itoh et al. 2011)、外洋域に広く分布する体長約 90 cm 以上の魚は、主に頭足類と魚類を捕食していること(Young <math>et al. 1997、Itoh and Sakai 2016)がわかっている。本種の捕食者は、他のマグロ類と同様、カジキ・マグロ類、サメ類、海産哺乳類であると考えられている。

資源状態

【資源評価】

ミナミマグロの資源状態は CCSBT 科学委員会により評価されている。2011年以降、CCSBT では管理方式(Management Procedure: MP、後述)による資源管理を継続しており、MPを運用するためのメタルール(Meta-rules:後述)の中で、単位努力量当たりの漁獲量(CPUE)等の漁業指標及び科学調査から得られた情報により資源状態を毎年検討すること、数理モデルを用いた詳細な資源評価を 3 年ごとに実施することを定めている。3年間の間隔は、本種が長寿命・長い世代時間という生活史特性を持つことから、親魚資源が急激に変動すること

図 4. CCSBT で用いられているミナミマグロの成長曲線

体長(尾叉長)に関しては、比較のため、1970年代と1980年代生まれの年級群に対応する成長曲線のみを示した。1970年代以前、1980年代以降に対応する体長の曲線はそれぞれ1970年代、1980年代のものとほぼ同様のカーブを描く。体長の曲線はEveson (2011)の式を基に、体重の曲線は本文の式を基にそれぞれ作図。

はあまり考えられないことに基づいている。科学委員会における資源評価は、MPを運用する上で、資源状態に問題が生じていないかを継続的に監視する役割が大きい。

科学委員会では、MP の開発のために独自に作成したオペレ ーティングモデル(Operating Model:OM)を資源評価のた めの数理モデルとして用いている。このモデルは単一系群を仮 定した年齢構造モデルであり、漁法別漁獲量、はえ縄 CPUE(図 5)、漁獲物の体長・年齢組成、航空目視調査による加入量指 数及び遺伝子標識調査(Gene Tagging: GT)による標識再捕 数(図6)、近縁遺伝子標識再捕(Close-Kin Mark-Recapture: CKMR) による親子ペア数等の観測データ及び成長式等の生物 情報(航空目視調査、GT、CKMR については後述)から、漁 獲死亡率、加入量、資源量等を推定する統合型資源評価モデル (「2. 漁業資源の変動と資源評価について」を参照)である。 資源評価を行う際は、資源に関わる不確実性を適切に把握する ために、再生産関係や自然死亡率といった、結果に不確実性を もたらすいくつかの重要な要因には複数の仮説を置き、それぞ れの仮説に基づいた解析結果を蓋然性で重み付けて 1 つにま とめ、これをベースケースとして評価している。科学委員会で は CKMR データの OM への取り込みに伴い、体長に依存した 繁殖力及び産卵場での滞在期間から算出する産卵ポテンシャ ルに基づいた「総再生産出力(Total Reproductive Output: TRO)」という概念を OM へ導入し、これを親魚資源量 (Spawning Stock Biomass: SSB) として示している。TRO による親魚資源量は産卵場で繁殖活動する親魚資源全体の繁 殖力を表す指数になっており、資源量の絶対値を示すものでは ないことに留意する必要がある。なお、資源評価の際には、こ

表 1. ミナミマグロの年齢別の体長と体重の関係

体長の各年代の数値はそれぞれの年代に生まれた年級群の成長に対応する。1950年代及び2000年代の成長は1960年代と1990年代のものにそれぞれ等しいと仮定している。

左 松	体長 (cm)				体重 (kg)
年齢	1960年代	1970年代	1980年代	1990年代	1970年代
0		•	•	•	
1	57.4	52.3	48.7	50.0	3.1
2	74.5	70.7	75.5	80.1	7.4
3	89.3	86.5	94.6	97.9	13.3
4	102.2	100.2	108.7	111.0	20.4
5	114.1	113.5	120.6	122.0	29.3
6	124.4	125.7	130.6	131.3	35.5
7	133.2	135.9	139.1	139.2	45.9
8	140.8	144.3	146.2	145.8	56.1
9	147.4	151.2	152.2	151.4	65.7
10	153.0	156.9	157.3	156.1	74.3
11	157.9	161.7	161.6	160.1	82.1
12	162.0	165.6	165.2	163.4	89.0
13	165.6	168.8	168.2	166.2	94.9
14	168.7	171.5	170.8	168.6	100.1
15	171.4	173.7	173.0	170.6	104.5
16	173.7	175.6	174.8	172.3	108.2
17	175.7	177.1	176.4	173.8	111.3
18	177.4	178.3	177.7	175.0	114.0
19	178.8	179.4	178.8	176.0	116.2
20	180.1	180.2	179.7	176.9	118.1
21	181.2	180.9	180.5	177.6	119.7

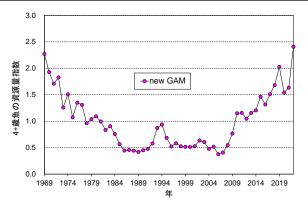
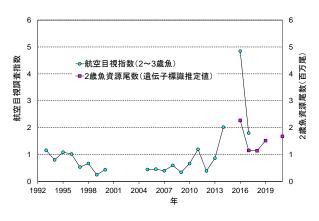
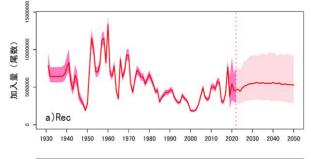
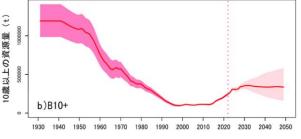


図 5. 日本のはえ縄漁業の CPUE データに基づくミナミマグロの 4+歳魚の資源量指数 (1969~2022 年)

Itoh and Takahashi (2023) のデータを基に作図。


図 6. 航空目視調査によるミナミマグロの加入量指数及び遺伝子標識調査による2歳魚資源尾数推定値(1993~2019年、2021年)

航空目視調査指数は飛行した単位海里当たりの資源量(2~3 歳魚)を平均値に対する相対値にして表されている。2001~ 2004年、2015年及び2018年以降は目視調査が行われていない。遺伝子標識調査は2016年より開始され、得られた標識 再捕データから加入量指標として2歳魚資源尾数が推定される。2020年の遺伝子標識調査は悪天候とCOVID-19の影響で中止されたため、2022年には推定値(2020年時点の2歳魚 資源尾数)は得られなかった。Eveson and Farley(2017)及びPreece and Bradford(2023)のデータを基に作図。

の新たな概念での親魚資源量と併せて、以前の定義に基づく親魚資源量(10歳以上の資源量:B10+)も過去の結果との比較のために提示するようにしている(207)。

2023 年の科学委員会では、メタルールに則り、OM を用いた詳細な資源評価を実施した。2023 年評価では、CPUE の時空間的なデータ特性に対してより柔軟な対応が可能となる統計手法を用いて作成された新たな資源量指数(図 5)が OM に使用され、資源評価の結果は以下のように報告された (CCSBT 2023a)。現在の親魚資源量は最大持続生産量 (MSY)を産出する親魚資源量 (B_{MSY})の約 85%の水準にあり、現在の漁獲死亡率は MSY を与える漁獲死亡率 (F_{MSY})以下の水準 (F_{MSY}の約 46%)である(図 8)。前回 2020 年の資源評価結果と比較して、漁業開始以前の親魚資源量に対する現資源量の割合が2020 年に推定された約 20%から約 23%に増加したという資源状態の改善が見られた(図 7 下段)。このことは親魚資源量

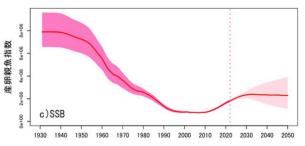


図 7. 2023 年に資源評価モデルにより推定されたミナミマグロの加入量(Rec:上段)、10歳以上の親魚資源量(B10+:中段)及び親魚資源量(SSB:下段) (1930~2050年)

B10+は以前に用いられていた定義による親魚資源量、SSB は 産卵 ポテンシャルに基づく「総再生産出力(Total Reproductive Output:TRO)」による親魚資源量を表す。太線は中央値、影部は80%確率区間を示す。縦の点線は2022年(資源の現状)を指す。2023年からの将来部分は管理方式(ケープタウン方式)を用いてTAC設定を続けた場合の予測である。CCSBT科学委員会が2023年に実施した資源評価の結果を基に作図(CCSBT 2023a)。

の回復水準を 20%とした従前の暫定回復目標(後述)をほぼ達成したことを示している。また資源評価結果からは、2009 年における低水準以来、親魚資源量は年率約 5%で回復してきており、MPを用いた回復計画は新たな管理目標に向けて順調に進んでいることが示唆された(管理目標については「管理方策」を参照)。 OM による資源評価と併せて最新の各種漁業指標及び科学調査による加入量指標(ひき縄指数)等も精査され、指標によって近年の増減は異なるものの特に異状は認められなかった。

【資源評価等のためのデータ収集】

日本独自の活動

資源評価解析や資源管理においては、最新の漁業情報を迅速かつ詳細に収集することが求められる。日本は漁業データ即時収集プログラム(Real Time Monitoring Program: RTMP)に

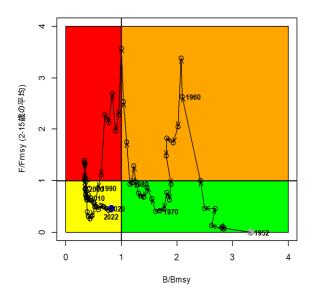


図 8. ミナミマグロ資源の神戸プロット: MSY を産出する資源量に対する各年の資源量の比(B/Bmsy: 横軸)及び MSY 水準を与える漁獲死亡率に対する各年の漁獲死亡率の比(F/Fmsy: 縦軸)の推移(1952~2022年)

丸印は推定されたそれぞれの比の中央値を示し、矢印はそれらの推移を示す。灰色の丸印は 1952 年時点、青色の丸印は 2022 年時点(資源の現状)。CCSBT (2023a) のデータを基に作図。

よって、ミナミマグロ漁場で操業する自国はえ縄船から漁獲情報を収集している。漁船は正午位置・操業結果を、衛星通信FAXを通じて毎日、水産庁へ報告し、これによって航海終了後に提出される漁獲成績報告書を用いるよりも迅速なデータ収集が可能となっている。また、体長・体重・性別等の漁獲物の詳細情報が収集され(体長データの収集率は100%)、RTMPから得られる最新で詳細な漁獲データは CCSBT における資源評価・管理に不可欠なものであり、特に CPUE データは資源評価モデルによる解析と MP の運用において極めて重要な役割を果たしている。

この他、日本は一部の自国はえ縄船に調査員(科学オブザーバー)を乗船させて、漁獲成績報告書や RTMP では把握できない操業に関連した情報や詳細な漁獲物測定データの収集、並びに生物標本の収集を行っている。これらはミナミマグロの資源解析・評価を支える基礎研究(耳石による年齢査定、胃内容物による食性調査、安定同位体による食物網解析、筋肉サンプルによる DNA 解析等;例えば Itoh et al. 2011、Itoh and Sakai 2016)だけでなく、他のマグロ・カジキ類の資源評価(他魚種の体長データ)、海鳥やサメ類等の混獲生物調査にも役立てられている。

また、漁業とは独立した調査活動として、早期に毎年の加入 状況を把握するため、オーストラリア南西岸においてミナミマ グロの 1 歳魚を対象にしたひき縄調査を続けている(Itoh 2023a)。調査データからは 1996 年から現在まで 20 年以上 に及ぶ 1 歳魚の加入量指数が作成され(Itoh 2023b)、加入状 況の検討並びに資源評価モデルによる解析に活用されている。

CCSBT における活動

CCSBT の科学調査計画 (Scientific Research Program: SRP) に含まれる主な調査活動として、航空目視調査、CKMR プロジェクト、GT がある。

航空目視調査はオーストラリアが SRP の一環としてオーストラリア大湾で実施してきたもので(Eveson and Farley 2017)、調査から得られた加入量指数(対象は 2~3 歳魚:図6)は加入状況の把握に用いられるとともに、従前の MP に必須の入力情報となっていた。しかし、オーストラリアから CCSBT への調査資金援助の要請が多額になり、2018 年調査のための予算は委員会での承認が得られず調査は休止された(CCSBT 2017)。航空目視調査から得られた既存の加入量指数(図 6)は現在でも OM に取り込まれて資源評価に利用されている。

CKMR プロジェクトは、産卵場で漁獲された親魚とオース トラリア大湾で漁獲された若齢魚の親子関係を広範な DNA 情 報によって特定し、得られた親子ペア数(Parent-Offspring Pairs: POP) のデータから標識再捕法に近い考え方を用いて 親魚資源量を推定する研究プロジェクトである。オーストラリ アが 2006~2010 年の 5 か年のサンプリング計画に基づき実 施を開始し、2015 年以降は SRP の下で継続されている (Bravington et al. 2013, 2016, Farley et al. 2023) . CKMR は漁獲情報や CPUE データに依存せずに資源量を推定できる ことが大きな特徴である。現在、CKMR プロジェクトでは POP データだけでなく、兄弟姉妹関係のペア数(Half-Sibling Pairs: HSP) のデータも収集されており(Farley *et al.* 2023)、この 情報からも POP データの解析と類似した方法で親魚資源量を 推定する手法が考案されている(Bravington et al. 2017)。 POP・HSP データは OM に取り込まれて資源評価に利用され ているとともに (Hillary et al. 2012、2017) 、現行の管理方式 (後述) に必須な入力情報になっている (Hillary et al. 2022)。

GTは、航空目視調査による加入量指数の代替となる指標を 得ることを目的とした調査で、標識再捕法を用いた資源量推定 を行うために遺伝子型解析の個体識別を"標識"と見立てて標 識再捕データを収集する (Preece et al. 2015)。データの収集 は、オーストラリア大湾でミナミマグロの 2 歳魚を捕獲して その DNA サンプルを採取して放流し、翌年、オーストラリア のまき網漁業によって漁獲された3歳魚から同じく DNA サン プルを取って個体識別を行い、得られたデータから標識再捕法 の考えに基づき前年時点における 2 歳魚の資源尾数を推定す る (図 6)。 CCSBT では 2016 年から GT を実施している。 GT から得られた標識再捕データは OM に取り込まれて資源評価 に利用されており(Hillary et al. 2019)、推定された2歳魚資 源尾数値は現行の管理方式 (後述) に必須な入力情報になって いる(Hillary et al. 2022)。なお、GT の 2020 年の捕獲調査 は悪天候と COVID-19 の影響で中止され、DNA サンプルを収 集できなかったため、2022年には2歳魚資源尾数値(2020年 時点の資源尾数)は得られなかった(Preece and Bradford 2023)。

管理方策

【MP による資源管理】

ミナミマグロの資源管理は CCSBT の下で MP を用いて行 われている。MP とは、CPUE 等の資源量指数や科学調査結果 から、事前に定められた方式(アルゴリズム)により TAC を 自動的に計算する漁獲制御ルール(Harvest Control Rule:HCR) のことである(Kurota et al. 2010; 「2. 漁業資源の変動と資 源評価について」も参照)。MPは、明確な数値目標の下、そ の時々の資源の動向に応じて TAC を増減させるフィードバッ ク制御によって資源崩壊を回避しつつ漁獲を継続させ、目標を 達成する。このように資源の状況をモニタリングしながら、そ の状態変化に応じて方策を変えることによって管理失敗のリ スクを低減する手法を「順応的管理 (Adaptive management)」 と呼ぶ (Walters 1986、松田 2008) 。目標達成度や不確実性 に対する頑健性は、MP を開発する段階で、OM を使用して資 源に関する様々な不確実性や将来シナリオを想定した膨大な 数の予測シミュレーション (管理方式の性能評価)を行うこと により検討される(予防的アプローチ)。このような方法は「管 理戦略評価 (Management Strategy Evaluation: MSE) 」 (Punt et al. 2016) と呼ばれている。MP を用いた管理は、将来の資 源状態に大きな不確実性がある状況でも資源を安全に管理す るために非常に有効である。重要な点は、状態変化に応じた順 応的な方策の変え方を予め定めているところにある。MP を採 用していることは、TAC 決定の手続きそのものを事前に約束 していることであり、MP によって決定された TAC には、そ れが仮に低い水準の TAC であったとしても従わなければなら ない。

CCSBT は、2011年の年次会合において、科学委員会が開発した日本のはえ縄漁業の CPUE 指数及び航空目視調査指数を入力情報とする MP の採用に合意し、ミナミマグロ資源での運用を開始した(CCSBT 2011、黒田ほか 2015、Hillary et al. 2016)。この MP は年次会合の開催地であったインドネシアのバリ島にちなみ「バリ方式(Bali Procedure)」と命名された。これにより CCSBT では、原則として MP を用いて3年ごとに TAC の計算を実施し、漁獲枠を決めることになった。MPによるミナミマグロの資源管理は、マグロの地域漁業管理機関では世界初となる画期的な試みとなった。

導入以降、順調に運用されてきたバリ方式であったが、必須な入力データの 1 つである加入量指数を得るための航空目視調査が 2017 年を最後に休止されたため、CCSBT は GT による加入量指数を入力情報として加えた MP を新たに開発し、2020 年から運用を再開した(CCSBT 2019b)。この MP は、年次会合の開催地であった南アフリカのケープタウンにちなみ「ケープタウン方式(Cape Town Procedure)」と命名された。ケープタウン方式は日本のはえ縄漁業の CPUE 指数(図5)、GT から得られる 2 歳魚資源尾数の推定値(図 6)及びCKMR の POP・HSP データを入力情報として TAC を算定する(Hillary et al. 2022)。MP の開発時に想定していなかった「例外的状況」がミナミマグロ資源や漁業に生じた場合、そのまま MP の使用を続けることは資源へのリスクとなる場合があることから、ケープタウン方式の運用にあたり、このような

「例外的状況」の判断及びそれに対処するための行動のプロセスもメタルールとして同時に定められた。

CCSBT はケープタウン方式の導入に合わせ、バリ方式のために定めた「2035 年までに70%の確率で、漁業開始以前の親魚資源量の20%水準まで資源を再建する」という暫定管理目標の達成を必要条件とした上で、さらに高い水準へ資源を回復させることに向けて、「2035 年までに50%の確率で、漁業開始以前の親魚資源量の30%水準まで資源を再建する」という管理目標を定めた(CCSBT 2019b)。この目標水準は、漁業開始以前の親魚資源量に対するB_{MSY}の割合(22~35%)とほぼ同じ水準である。

【TAC の設定】

CCSBT は、2023 年 10 月の第 30 回年次会合において、2024 \sim 2026 年漁期の TAC を毎年 20,647 トンとすることに合意した(CCSBT 2023b)。この TAC は 2024 \sim 2026 年漁期に対して、ケープタウン方式による 2022 年の計算結果から科学委員会が勧告したものである(CCSBT 2023a)。

2024 年漁期の漁獲枠については、この TAC から調査用漁獲枠 6 トンを取り置いた残りがメンバーへ割り当てられた (CCSBT 2023b)。歴史的な配分割合をベースとして国・地域別の事情を考慮した結果、割当量はそれぞれ日本 7,247 トン、オーストラリア 7,295 トン、ニュージーランド 1,288 トン、韓国 1,468 トン、台湾 1,468 トン、インドネシア 1,336 トン、EU13 トン、南アフリカ 527 トンである。日本の割当量からはインドネシアに 21 トン/年、南アフリカに 27 トン/年が移譲されている。

【漁獲管理】

日本は 2005 年まで、漁場ごとに漁獲開始日と上限漁獲枠を設定し、漁獲状況に応じて漁獲終了日を決定することで自国は え縄船のミナミマグロ操業を管理してきたが、2006 年以降、漁獲枠の個別割当制度や、全ての漁獲個体への識別標識の装着制度等の導入により漁獲管理を強化した。また、CCSBTでは、全てのメンバーのミナミマグロ漁業を対象とした監視取締措置として、2008 年より人工衛星を用いて漁船の位置をモニターする漁船位置監視システムを導入し、2010 年からは漁獲から畜養、水揚げ、貿易までの全ての過程を書類及び識別標識を用いて監視する漁獲証明制度も開始した。2011 年には、委員会で決定された保存管理措置の確実な実施を促進する CCSBT 遵守計画が策定された。

2006 年以来、オーストラリアのまき網漁業の漁獲管理において、漁獲量推定のために畜養生簀で行うサンプリング方法がバイアスを生じさせている懸念があり、それによって同国の漁獲量が過少報告されている可能性が指摘されている(CCSBT 2006)。この指摘を受けて、オーストラリアは、水中ステレオビデオカメラを用いて活け込み原魚の魚体サイズの測定と尾数の計数を行うことで、より正確に漁獲量を推定する手法を開発・試験してきた(CCSBT 2012)。同手法による魚体サイズの測定精度は良好であることが確認されており、2019 年の第24 回科学委員会会合においても水中ステレオビデオカメラ導入が畜養サンプリング方法の懸念を手当する唯一の直接的手

法である旨が独立専門家から助言されたが(CCSBT 2019a)、計画の立案から 10 年以上が経っているにもかかわらず、オーストラリアはこの手法をいまだ商業畜養生簀へ導入していない。

執筆者

くろまぐろユニット みなみまぐろサブユニット 水産資源研究所 水産資源研究センター 広域性資源部 まぐろ第1グループ 高橋 紀夫・伊藤 智幸

参考文献

- Bravington, M., Grewe, P., and Davies, C. 2013. Close-kin update. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/1309/BGD 03. https://www.ccsbt.org/en/past-meetings(2023 年 11 月 01 日)
- Bravington, M.V., Grewe, P.M., and Davies, C.R. 2016. Absolute abundance of southern bluefin tuna estimated by close-kin mark-recapture. Nat. Commun., 7: 13162. Doi: 10.1038/ncomms13162
- Bravington, M.V., Eveson, J.P., Grewe, P.M., and Davies, C.R. 2017. SBT close-kin mark-recapture with parent-offspring and half-sibling pairs: update on genotyping, kin-finding and model development. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/1708/12.
 - https://www.ccsbt.org/en/past-meetings (2023 年 11 月 01 日)
- Caton, A.E. (ed.). 1994. Review of aspects of southern bluefin tuna biology, population, and fisheries. FAO, Fish. Tech. Pap., 336(2): 296-343.
- CCSBT. 2006. Report of the thirteenth annual meeting of the Commission, 10-13 October 2006 Miyazaki, Japan. CCSBT, Canberra, Australia. 135 pp.
- https://www.ccsbt.org/en/content/reports-past-meetings (20232 年 11 月 01 日)
- CCSBT. 2009. Report of the sixteenth annual meeting of the Commission, 20-23 October 2009 Jeju Island, Republic of Korea. CCSBT, Canberra, Australia. 111 pp.
- https://www.ccsbt.org/en/content/reports-past-meetings (2023年11月01日)
- CCSBT. 2011. Report of the eighteenth annual meeting of the Commission, 10-13 October 2011 Bali, Indonesia. CCSBT, Canberra, Australia. 118 pp.
- https://www.ccsbt.org/en/content/reports-past-meetings $(2023 \mp 11 \ \hbox{$\beta$}\ 01\ \hbox{$\Box$})$
- CCSBT. 2012. Report of the nineteenth annual meeting of the Commission, 1-4 October 2012 Takamatsu City, Japan. CCSBT, Canberra, Australia. 97 pp.

- https://www.ccsbt.org/en/content/reports-past-meetings (20232 年 11 月 01 日)
- CCSBT. 2017. Report of the twenty fourth annual meeting of the Commission, 12 October 2017. CCSBT, Yogyakarta, Indonesia. 91 pp.
 - https://www.ccsbt.org/en/content/reports-past-meetings (2023 年 11 月 01 日)
- CCSBT. 2019a. Report of the twenty fourth meeting of the Scientific Committee, 7 September 2019. CCSBT, Cape Town, South Africa. 121 pp.
 - https://www.ccsbt.org/en/content/reports-past-meetings(2023 年 11 月 01 日)
- CCSBT. 2019b. Report of the twenty fifth annual meeting of the Commission, 17 October 2019. CCSBT, Cape Town, South Africa. 103 pp.
 - https://www.ccsbt.org/en/content/reports-past-meetings (2023年11月01日)
- CCSBT. 2023a. Report of the twenty eighth meeting of the Scientific Committee, 1 September 2023. CCSBT, Jeju Island, Republic of Korea. 91 pp.
 - https://www.ccsbt.org/en/content/reports-past-meetings (2023 年 11 月 01 日)
- CCSBT. 2023b. Report of the thirtieth annual meeting of the Commission, 12 October 2023. CCSBT, Busan, Korea. 102 pp.
 - https://www.ccsbt.org/en/content/reports-past-meetings(2023年11月01日)
- Evans, K., Patterson, T.A., Reid, H., and Harley, S.J. 2012. Reproductive Schedules in Southern Bluefin Tuna: Are Current Assumptions Appropriate? PloS ONE, 7(4): e34550. Doi: 10.1371/journal.pone.0034550
- Eveson, P. 2011. Updated growth estimates for the 1990s and 2000s, and new age-length cut-points for the operating model and management procedures. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/1107/9.
 - https://www.ccsbt.org/en/past-meetings (2023 年 11 月 01 日)
- Eveson, P., and Farley, J. 2017. The aerial survey index of abundance: 2017 updated results. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/1708/06.
 - https://www.ccsbt.org/en/past-meetings (2023 年 11 月 01 日)
- Farley, J.H., and Davis, T.L.O. 1998. Reproductive dynamics of southern bluefin tuna, *Thunnus maccoyii*. Fish. Bull., 96: 223-236.
- Farley, J.H., Davis, T.L.O., Gunn, J.S., Clear, N.P., and Preece, A.L. 2007. Demographic patterns of southern bluefin tuna, *Thunnus maccoyii*, as inferred from direct age data. Fish.Res., 83: 151-161.
- Farley, J., Eveson, P., and Gunasekera, R. 2023. Update on

- the SBT close-kin tissue sampling, processing and kinfinding 2023. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/2308/07. https://www.ccsbt.org/en/past-meetings(2023 年 11 月 01 日)
- Grewe, P.M., Elliott, N.G., Innes, B.H., and Ward, R.D. 1997. Genetic population structure of southern bluefin tuna (*Thunnus maccoyii*). Mar. Biol., 127(4): 555-561.
- Hearn, W.S., and Polacheck, T. 2003. Estimating long-term growth-rate changes of southern bluefin tuna (*Thunnus maccoyii*) from two periods of tag-return data. Fish. Bull., 101: 58-74.
- Hillary, R., Preece, A., Davies, C., Bravington, M., Eveson, J.P., and Basson, M. 2012. Initial exploration of options for inclusion of the close-kin data into the SBT operating model. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/1208/21.
 - https://www.ccsbt.org/en/past-meetings (2023 年 11 月 01 日)
- Hillary, R., Preece, A., and Davies, C. 2013. Updates to the CCSBT Operating Model including new data sources, data weighting and re-sampling of the grid. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/1309/15.
 - https://www.ccsbt.org/en/past-meetings (2023 年 11 月 01 日)
- Hillary, R.M., Preece, A., Davies, C.R., Kurota, H., Sakai, O., Itoh, T., Parma, A.M., Butterworth, D.S., Ianelli, J., and Branch, T.A. 2016. A scientific alternative to moratoria for rebuilding depleted international tuna stocks. Fish. Fish., 17: 469-482.
- Hillary, R., Preece, A., and Davies, C. 2017. Updates required for new data sources and recondtioning of the CCSBT OM. Paper submitted to the CCSBT Operating Model and Management Procedure Technical Meeting. CCSBT-OMMP/1706/04.
 - https://www.ccsbt.org/en/past-meetings (2023 年 11 月 01 日)
- Hillary, R., Preece, A., and Davies, C. 2019. Changes to SBT OM conditioning code. Paper submitted to the CCSBT Operating Model and Management Procedure Technical Meeting. CCSBT-OMMP/1906/04).
 - https://www.ccsbt.org/en/past-meetings(2023 年 11 月 01 日)
- Hillary, R., Preece, A., and Davies, C. 2022. Running the Cape Town Procedure for 2022. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/2208/17.
 - https://www.ccsbt.org/en/past-meetings(2023 年 11 月 01 日)
- Hobsbawn, S., Blake, S., and Patterson, H. 2023. Australia's 2021-22 southern bluefin tuna fishing season. Paper

- submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/2308/ SBT Fisheries Australia. https://www.ccsbt.org/en/past-meetings(2023 年 11 月 01 日)
- Itoh, T. 2023a. Report of the piston-line trolling monitoring survey for the age-1 southern bluefin tuna recruitment index in 2023. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/2308/19. https://www.ccsbt.org/en/past-meetings (2023 年 11 月
- Itoh, T. 2023b. Trolling indices for age-1 southern bluefin tuna: update of the grid type trolling index in 2023. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/2308/21 (Rev.1).
 - https://www.ccsbt.org/en/past-meetings (2023 年 11 月 01 日)
- Itoh, T., Kemps, H., and Totterdell, J. 2011. Diet of young southern bluefin tuna *Thunnus maccoyii* in the southwestern coastal waters of Australia in summer. Fish. Sci., 77: 337-344.
- Itoh, T., and Sakai, O. 2016. Open-ocean foraging ecology of southern bluefin tuna *Thunnus maccoyii* based on stomach contents. Mar. Ecol. Prog. Ser., 555: 203-219.
- Itoh, T., and Takahashi, N. 2023. Update of CPUE abundance index using GAM for southern bluefin tuna in CCSBT up to the 2022 data. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/2308/BGD 03 (*Previously* CCSBT-OMMP/2306/05).
 - https://www.ccsbt.org/en/past-meetings(2023 年 11 月 01 日)
- 岩井 保・中村 泉・松原喜代松. 1965. マグロ類の分類学的研究. 京都大学みさき臨海研究所特別報告, 2: 1-51.
- Kurota, H., Hiramatsu, K., Takahashi, N., Shono, H., Itoh, T., and Tsuji, S. 2010. Developing a management procedure robust to uncertainty for Southern bluefin tuna: a somewhat frustrating struggle to bridge the gap between ideals and reality. Popul. Ecol., 52: 359-372.
- 黒田啓行・境 磨・高橋紀夫・伊藤智幸. 2015. TAC を算定する 新しいアプローチ: ミナミマグロの管理方式の開発と運用. 水産海洋研究, 79(4): 297-307.
- 松田裕之. 2008. 生態リスク学入門 予防的順応的管理. 共立 出版, 東京. 213 pp.
- 西田 勤. 1994. ミナミマグロ資源について. 月刊 海洋, 291: 579-584.
- 西川康夫・本間 操・上柳昭治・木川昭二.1985. 遠洋性サバ型 魚類稚仔の平均分布,1956-1981 年. 遠洋水産研究所 S シ リーズ 12. 遠洋水産研究所,静岡.99 pp.
 - http://fsf.fra.affrc.go.jp/maguro20/Nishikawa-1985.pdf (2023 年 11 月 01 日)
- Patterson, T.A., Eveson, J.P., Hartog, J.R., Evans, K., Cooper, S., Lansdell, M., Hobday, A.J., and Davie, C.R. 2018. Migration dynamics of juvenile southern bluefin tuna. Sci.

- Rep., 8: 14553.
- Preece, A., Eveson, P., Davies, C., Grewe, P., Hillary, R., and Bravington, M. 2015. Report on gene-tagging design study. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/1509/18.
- https://www.ccsbt.org/en/past-meetings(2023 年 11 月 01 日)
- Preece, A.L., and Bradford, R. 2023. Update on the Genetagging program 2023 and RMA request. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/2308/09.
- https://www.ccsbt.org/en/past-meetings (2023 年 11 月 01 日)
- Punt, A.E., Butterworth, D.S., de Moor, C.L., De Oliveira, J.A.A., and Haddon, M. 2016. Management strategy evaluation: best practice. Fish and Fisheries, 17: 303-334.
- 新宮千臣. 1970. ミナミマグロの分布と回遊に関する研究. 遠洋水研報告, 3: 57-113.
- 新宮千臣. 1978. ミナミマグロの生態と資源. 水産研究叢書 31. 日本水産資源保護協会, 東京. 85 pp.

- 新宮千臣・藁科侑生. 1965. ミナミマグロ *Thunnus maccoyii* (CASTELNAU)の研究 I, ミナミマグロの外部形態の比較. 南海区水研報告, 22: 85-93.
- Takahashi, N., Tsuji, S., and Kurota, H. 2004. Review of the current CCSBT Tagging Program and potential improvements. Paper submitted to the CCSBT Extended Scientific Committee Meeting. CCSBT-ESC/0409/36.
- https://www.ccsbt.org/en/past-meetings (2023 年 11 月 01 日)
- Walters, C.J. 1986. Adaptive Management of Renewable Resources. MacMillan Pub. Co, New York, USA. 374 pp.
- Young, J.W., Lamb, T.D., Le, D., Bradford, R.W., and Whitelaw, A.W. 1997. Feeding ecology and interannual variations in diet of southern bluefin tuna, *Thunnus maccoyii*, in relation to coastal and oceanic waters off eastern Tasmania, Australia. Environ. Biol. Fishes., 50: 275-291.

ミナミマグロの資源の現況(要約表)

世界の漁獲量 (最近5年間)	15,666~17,148トン 最近(2022)年:17,134トン 平均:16,777トン(2018~2022年)		
我が国の漁獲量 (最近5年間)	5,851~6,452 トン 最近 (2022) 年:5,887 トン 平均:6,013 トン (2018~2022 年)		
資源評価の方法	漁法別漁獲量、はえ縄 CPUE、年齢・体長組成データ、航空目視調査による加入量指数、CKMR による遺伝データ、GT による標識再捕データ等、複数の情報を CCSBT が独自に開発した統合型資源評価モデルによって評価		
資源の状態 (資源評価結果)	初期 SSB の 23% MSY を産出する SSB の 85% MSY を与える漁獲圧の 46% 10歳以上の資源量は 247,963~283,275 トン 2022 年時点、従前の暫定管理目標はほぼ達成、管理目標に向けて順調に回復		
管理目標	初期 SSB の 30%水準(ほぼ B _{MSY} 水準と同じ)を 2035 年までに 50%の確率で達成する。ただし、従前の暫定目標である 2035 年までに 20%水準を 70%の確率で達成することも必要。		
管理措置	TAC の設定:2024~2026 年漁期の TAC は毎年 20,647 トン(日本 7,247 トン) 漁獲証明制度		
管理機関・関係機関	CCSBT、ICCAT、IOTC、WCPFC		
最近の資源評価年	2023年		
次回の資源評価年	2026 年		