Japanese Eel, *Anguilla japonica*

Hiroshi Hakoyama¹, Leanne Faulks¹, Sakie Kodama¹, Chiaki Okamoto¹, Hiroka Fujimori¹, Ayu Daryani¹, and Masashi Sekino²

¹Nagano University
²National Research Institute of Fisheries Resources

March 31, 2022

Related Organizations

The Food and Agriculture Organization of the United Nations (FAO), the International Union for Conservation of Nature (IUCN), and the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) are the related organizations of the management of Japanese eels.

Recent Trends

The decline of the Japanese eel population continues to be of concern to fisheries and conservation managers. Promoting population management through both domestic measures and international cooperation is crucially important for ensuring the sustainable use of the species. In 2014, Japan, China, the Republic of Korea, and Chinese Taipei released a Joint Statement at the Seventh Meeting of the Informal Consultation on International Cooperation for Conservation and Management of Japanese Eel Stock and Other Relevant Eel Species, restricting input of eel seeds into aquaculture ponds: the amount of input of eel seeds for the 2014–2015 input season was to be no more than 80% of that of the 2013–2014 input season. Participants were consulted by email between May and July 2021 and all commitments were updated. Participants reviewed the status of compliance with the joint statement, the management measures taken by each country and region after the joint statement, and confirmed the upper limit of eel seeds into aquaculture ponds for the next fishing season.

Japanese eel is traded internationally in its various life stages. Adult eels are consumed directly as food, whereas glass eels and eel fries are used as seedlings for aquaculture. The conservation of eel species, including Japanese eel, has been discussed at CITES. According to the Decisions of the Conference of the Parties at the 18th meeting held in August 2019, range states of non-CITES eel species in international trade are encouraged to collaborate and cooperate with other range states to develop shared objectives, establish monitoring programs, and enhance knowledge of the biology of the species.
Usage

One typical eel dish in Japan is grilled eel or Kabayaki, often served as Unaju or Unadon. There are also some local eel dishes in Japan such as Hitsumabushi and Seiromushi. Japanese eel serum contains poison; it should never be eaten raw (Yoshida et al., 2008). Japanese eel is not only used as a food source but also as an ingredient for traditional medicine in China and on the Korean peninsula (Kuroki, 2019).

Overview of the Fishery

Farmed eels account for most of the domestic supply in Japan. However, wild yellow eels (developmental stage) are still caught by longlines or traps set in freshwater and brackish waters (Mochioka, 2019). The history of eel fisheries in Japan extends back to the Edo era (1603-1868). In fact, official data of eel catches have been available since 1894 (Hakoyama et al., 2016). The domestic eel catch was stable at 3,000 to 4,000 tons in the early 19th century, but it decreased during World War II. Although it recovered temporarily to the 3,000-ton range in the 1960s, the catch has been declining since 1970 (Fig. 1). The domestic catch in 2020 was 65 tons, the lowest ever. The number of inland fishermen (the number of fishery management entities in lakes that mainly targeted yellow/silver eels) during this period also decreased remarkably (Hakoyama et al., 2016). Eel farming developed in the 19th century, with domestic eel farming using elver eels (juvenile stage) having begun in 1879. The eel farming industry became viable in the 1920s, as the methods for raising glass eels advanced. Aquaculture production exceeded the wild catch in the 1930s (Tanaka, 2019): its peak amounted to 39,704 tons in 1988, but it has been stable at around 20,000 tons since 1997; production was 16,887 tons in 2020 (Fig. 2).

Glass eels, which serve as seeds for eel farming, are harvested in four regions: Japan, China, Korea, and Chinese Taipei. In Japan, the harvest period is generally December–April. Harvesters catch eels by scooping or using set nets in coastal estuaries and river mouths. Glass eel fisheries are managed by prefectural governments under a licensing system. Prefectural governors issue permits typically restricting the harvesting period, fishing gear, and fishing area. Domestic catch of seeds exceeded 100 tons before 1966, but they fell drastically from 1971 to less than 20 tons in 1990 (Fig. 3). Figure 3 shows the total seed catch in the sea and inland waters. Seeds caught in the sea had “glass eel” labels as their item name or had footnotes that denote they are glass eels. The eels caught in inland waters had no clear description or labels on them, but the quantities collected in rivers and lakes were recorded. According to the Minister’s Secretariat Statistics Department, most seeds were assumed to be glass eels, but some elvers might have been included in the data (Personal communication). Around 1960, the developing eel farming industries of Shizuoka, Aichi, and Mie prefectures introduced large amounts of elvers from the Tone River system in Ibaraki and Chiba. During the fishing season, from the middle of March to late October, the seeds collected from the lower Tone River included elver eels: they were 5–20 g and 15–25 cm long. Of these, 60% were supplied to Shizuoka, Aichi, and Mie prefectures as seeds for eel farming (Matsui, 1972a, pp. 333–335). Since at least 1978, the fishing season for seeds in the nine major aquaculture prefectures has been limited to glass eels during winter (Eel Culture Research Council, 1980). This information suggests that eels caught around 1960 included more elver eels than recent catches. If this is the case, the rate of the decrease in glass eel catch is likely to be
The global catch of Japanese eel decreased from 3,619 tons in 1969 to 121 tons in 2019, reflecting the trend seen in wild adult eel catches in Japan, which account for approximately 55% of the global catch (Fig. 4). Regarding recent glass eel catches from 2009 to 2017, China had the highest annual catch, followed by Japan. The catches of these two countries accounted for most of the total. During the last several decades, the total amount of glass eels caught in the four regions has fluctuated from year to year, ranging from 20 to 90 tons. In the 2019 fishing season, the catches were 3.7 tons in Japan, 0.6 tons in Korea, and 2.75 tons in Chinese Taipei, but the catches in the 2020 fishing season increased significantly to 17.1 tons in Japan, 4.5 tons in Korea, and 5.2 tons in Chinese Taipei. In the 2021 fishing season (November 1, 2020 to April 30, 2021), the catches were 11.1 tons in Japan, 2.5 tons in Korea, and 5.7 tons in Chinese Taipei (Fig. 5).

Biological Properties

Life History

Japanese eel is a migratory species (catadromous fish) that breeds in the ocean and grows in freshwater, brackish waters and coastal habitats over years or decades. The species spawning area is regarded as the West Mariana Ridge (Tsukamoto, 1992; Tsukamoto et al., 2011). The Kuroshio current transports hatched larvae for thousands of kilometers to freshwater and brackish water habitats on the coasts of eastern Asian countries. The spawning season is estimated as extending from April through August. It is likely to take place concurrently with a new moon (Tsukamoto et al., 2003; Shinoda et al., 2011). The eggs, each having a diameter of approximately 1.6 mm, are laid at a depth of 150–200 m (Tsukamoto et al., 2011) in waters of 25°C.

The transparent, willow-like Japanese eel larva is called a leptocephalus. Leptocephali are transported westward via the North Equatorial Current (NEC) and mesoscale vortex. They drift northward at the boundary of the Kuroshio Current as they transform into glass eels (Fig. 6). Arriving in coastal areas, the glass eels (already about 0.2 g) will then disperse to freshwater, brackish, and coastal habitats. Upon settling in their respective habitats, glass eels shift into a benthic sheltering behavior. Their body surface gradually turns black. Eels with sufficient pigmentation on their bodies are called elver eels. Their ventral side becomes yellowish as they grow into the yellow eel stage: the longest eel life stage. After living in rivers, matured yellow eels show morphological changes (e.g. enlargement of the eyes) and transform into silver eels before migrating (Matsui, 1972b).

The recruitment season of glass eels varies by country or region, but in Japan it mainly occurs during winter, from December through April (Han, 2011). Figure 7 presents the monthly glass eel catch from 2002 (2002–2003) to 2018 (2018–2019). The peak of recruitment can occur anytime during winter or spring and varies every year. These fluctuations in migration patterns are not yet fully understood. In 2019 in the Saigo River, Fukutsu City, Fukuoka Prefecture, a survey conducted by Kyushu University during the new moon revealed that the largest recruitment (1,086 individuals) occurred on April 4, followed by February 2 (240 individuals) and May 3 (106 individuals). Only three individuals were collected during June–August; none were collected in September (Fig. 8). Nevertheless, quantitative evaluation of the amount of migration is difficult using such a small survey.
Population Genetics and Phylogeny

Elucidating the population genetic structure of organisms is indispensable, not only for defining the management units of natural resources but also for accurately estimating the effective size of populations, which can be used to evaluate population viability and perenniality. In recent years, the population genetic structure of the Japanese eel has been a subject of intense debate. Earlier population genetic studies that used limited numbers of genetic markers supported panmixia in Japanese eel (e.g., Ishikawa et al., 2001; Sang et al., 1994), although Tseng et al. (2006) revealed the presence of two genetically different groups (northern and southern groups). More recently, a genome-wide analysis of single nucleotide polymorphisms (SNPs) using the whole-genome resequencing technique (Igarashi et al., 2018) suggested that an estuary population from the Kuma River (Kumamoto Prefecture) is genetically divergent from other populations. On the other hand, another study based on SNPs detected using restriction site-associated DNA sequencing found limited temporal and spatial genetic differentiation among populations along the coasts of Japan and China (Gong et al., 2019). These conflicting results highlight the need for further examination of the population genetic structure of Japanese eel.

The time to the most recent common ancestor of the anguillid eels traces back to approximately 20 million years ago (Minegishi et al., 2005). The Japanese eel is a component of a monophyletic clade that contains the Indo-Pacific species. The divergence of Japanese eel from the other species is thought to have occurred at the foremost stage of the speciation process within this clade (Minegishi et al., 2005; Zhu et al., 2018).

Growth and Maturation

The growth rate of Japanese eel varies widely among individuals, ranging from 5–20 cm per year (Yokouchi et al., 2008, 2012). Individuals usually mature at the yellow eel stage of 5–10 years, but some have matured at age 22, which is the estimated maximum lifespan (Chino and Arai, 2009; Kotake et al., 2007; Lin and Tzeng, 2009; Sudo et al., 2013; Yokouchi et al., 2009). Sex is determined by the environment an individual experiences from the glass eel to the elver phase. The effect of sex on the growth rate is poorly understood, but females mature at a larger size and at an older age than males (Chino and Arai, 2009; Kotake et al., 2007; Lin and Tzeng, 2009; Sudo et al., 2013; Yokouchi et al., 2009). Water temperatures and food availability affect the growth and maturity rate (Yokouchi et al., 2008) of eels. Faster and higher growth rates are observed at low latitudes with high water temperatures (Hagihara et al., 2018) and in brackish waters (Kaifu et al., 2013; Kotake et al., 2005; Yokouchi et al., 2008, 2012).

Distribution

Japanese eel is distributed in east Asian freshwater and coastal areas such as the Japanese coast, the Korean peninsula, mainland China, and the Philippines (Han et al., 2012; Tsukamoto et al., 2003) (Fig. 9). The spawning grounds are located near the Mariana Trench. The larvae are dispersed by the NEC and the Kuroshio Current (Shinoda et al., 2011).
Habitat

Yellow eels that do not settle in rivers might stay in bays or estuaries or even migrate back and forth many times between the sea and river, displaying migratory polymorphisms and habitat shifts (Arai et al., 2003). Yellow eels tend to hide in refuges such as holes, crevices, and mud burrows (Aoyama et al., 2005; Tesch, 2003).

Freshwater

Yellow eels are distributed over a wide area from downstream to upstream rivers or lakes. Eels are found mainly near the shore and tend to avoid the center of rivers (Aoyama et al., 2002; Itakura et al., 2018). Movement between both shores of the river is uncommon, suggesting short home ranges (Itakura et al., 2018). Eels prefer a deep environment and they are often concentrated in areas with a gentle river slope with many stones in the riverbed (Matsushige et al., 2020).

Brackish Water

Japanese eel resides in coastal habitats and occupies shallow estuaries where tidal effects are present (Matsushige et al., 2020). It also resides in tidal flats, where it burrows in sandy mud areas (Aoyama et al., 2005).

Spawning Migration

Silver eels begin their spawning migration from autumn to winter (September–February) (Kotake et al., 2007). Japanese eel spawns in the western waters of the Mariana Islands (14°–16°N, 142°E), about 3,000 km away from the coast of Japan (Tsukamoto, 1992, 2006). Although the evolutionary process of the spawning migration in eel species remains unclear, the ancestral eel species presumably undertook a short-distance migration in tropical coastal waters then eventually adopted a long-distance migration, similar to that of the extant temperate eels (Arai, 2014). Results of satellite tracking have provided only fragmentary information related to Japanese eel migration routes (Manabe et al., 2011), and the comprehensive picture remains unclear. Japanese eel performs daily vertical movement during their spawning migration (Higuchi et al., 2018; Manabe et al., 2011). It dives into deep waters (500–800 m) to which light does not penetrate during the day. Then it moves to shallower depths of less than 300 m during the nighttime (Chow et al., 2015; Manabe et al., 2011). The swimming depth is affected by the light intensity of the environment (Higuchi et al., 2018; Watanabe et al., 2020). The higher the lunar light intensity becomes, the deeper the nighttime swimming depth becomes (Chow et al., 2015; Higuchi et al., 2018). Anguillid adult eels do not feed after starting the spawning migration (Chow et al., 2010). Their vertical movement is mainly undertaken to avoid visually oriented predators such as tuna and sharks (Chow et al., 2015; Manabe et al., 2011; Watanabe et al., 2020).

Transport of Leptocephalus

After hatching in the West Mariana Ridge, the larval eels, or leptocephali, are transported by the NEC to the east coast of the Philippines and are carried by the Kuroshio Current to habitat areas in east Asia such as Japan and Chinese Taipei. They must enter the north-flowing Kuroshio and not the south-flowing Mindanao Current to reach the habitat areas successfully. In a simulation conducted by

Copyright © 2022 Fisheries Agency of Japan & Japan Fisheries Research and Education Agency
All rights reserved.
Zenimoto et al. (2009), more leptocephali enter the Mindanao Current during El Niño years, thereby decreasing the probability of northward transportation by Kuroshio. Another simulation conducted by Chang et al. (2018b) implied that the weakening of the NEC is a cause of glass eel recruitment decline over the past 20 years.

These analyses were conducted on the assumption that the northward Ekman transport caused by trade winds, as well as the leptocephalus' floating depth, determine the migratory patterns of Japanese eels (Kimura et al., 1994). Leptocephali show diel vertical migration, floating in deep waters during the daytime and in shallow waters during the nighttime. Otake et al. (1998) reported that the nighttime depth gets shallower as leptocephali grow: 40 mm long eels were found at around 50 m depth. Because the Ekman layer is shallower than 70 m, leptocephali are affected by Ekman transport after they grow to a certain length, probably more than 20 mm. Weakened trade winds during El Niño seasons, which entail a northward shift of the bifurcation point of the NEC into the Kuroshio current and Mindanao current, might account for the decreased rate of northward larval transportation by the Kuroshio current during this event.

Another mechanism that may contribute to lower recruitment during El Niño events is the southward shift of the salinity front. The spawning location is estimated as being in the southwest of the place where the salinity front and the seamount chain cross (Tsukamoto et al., 2011). Therefore, the latitude of the salinity front also influences leptocephalus transport. The salinity front is usually located at about 15° north latitude, but occasionally moves south beyond 5° north latitude. Because the NEC south of 10° north latitude connects to the Mindanao Current, the southward shift of the salinity front can prevent leptocephali from migrating northward (Kimura et al., 2001).

These models, which assume that the ocean environment prescribes the recruitment of the Japanese eel into the habitat area, are supported by buoy tracking (Kimura and Tsukamoto, 2006) and correlations with the catch per unit effort (CPUE) data from Tanegashima Island (Zenimoto et al., 2009). However, statistical analyses using long-term glass eel catch data obtained during 1967–2008 in Chinese Taipei did not provide statistically significant support for a correlation between catch and the bifurcation point of the NEC, or the occurrence of El Niño events (Tzeng et al., 2012). Mature eels are expected to spawn more or less concurrently with new moon periods during April–August (Shinoda et al., 2011). Han et al. (2016) reported that recruitment in Chinese Taipei exhibits batch-like arrival waves of different cohorts at intervals of one month, which are presumably derived from different spawning dates. In addition, leptocephali trapped in mesoscale eddies might have some influence on recruitment patterns (Chang et al., 2018a). The large meander of the Kuroshio might not prohibit recruitment to Japan (Chang et al., 2019). There remains much to be uncovered about leptocephalus transport patterns. An understanding of these patterns might be useful for improving Japanese eel resource management in the future.

Prey

Japanese eel starts feeding after becoming leptocephali. Although leptocephalus food preferences have not been clarified, their hypothesized consumption of marine snow has become widely supported (Miller et al., 2013; Mochioka and Iwamizu, 1996; Otake et al., 1993). The feeding ecology of glass eels and elver eels is also remains uncertain. Yellow eels from coastal areas to rivers feed on small fishes, crustaceans, polychaetes, shellfishes, aquatic insects, etc. (Itakura et al., 2015; Kaifu et al., 2013; Kan et al., 2016). However, diet preferences vary depending on the growth stage, environment, and season.
(Kaifu et al., 2013) as well as individual differences.

Predators

Knowledge about Japanese eel predators remains limited, although eels are presumed to be preyed upon by various animals throughout their life history. A recent study conducted at the Tone River revealed that channel catfish and blackfin sea bass prey on glass eels (Miyake et al., 2018). During the yellow eel phase, some reports have described predation of New Zealand long-fin eel by catfish, brown trout, cormorants, ducks, kingfishers, and water rats (Jellyman, 1977), and have even revealed predation of American eel by larger conspecifics (Barker, 1997). Results suggest that Japanese eel at the yellow eel stage is caught by carnivorous fish, birds, and mammals. In a satellite tracking study using pop-up tags, tunas and sharks were observed to prey on silver eels during the spawning migration (Bégner-Pon et al., 2012; Manabe et al., 2011).

Population Status

The Ministry of the Environment and IUCN listed Japanese eel as an endangered species (categorized respectively as endangered IB in 2013 and 2014). Although it is difficult to identify the causes of the population decrease of this species, changes in the marine environment, overfishing, and deterioration of habitats have been regarded as important factors. Particularly, reinforcing riverbanks with concrete, in which eels cannot hide, constructing barriers impeding eel migration in rivers, and interrupting connections between rivers and rice paddies might strongly exacerbate damage to eel habitats. To understand the population trends, data of glass eel and yellow eel catches in Japanese habitats are important. Japan's yellow eel catch exceeded 600 tons in the early 2000s, 500 tons after 2005, but less than 100 tons after 2015. The figure plummeted to 65 tons in 2020: the lowest figure ever (Fig. 1). The remarkable decrease in inland fishermen during this period must also have contributed to this trend, but the degree of such contribution cannot be estimated due to the lack of necessary data. A survey conducted in Okayama Prefecture revealed that the CPUE of yellow eel decreased by one-third in both longline fisheries and small set net fisheries during 2003–2016 (Kaifu et al., 2018). Glass eel catch data show a decrease to less than 10 tons in 2010–2013, a slight increase to 15 tons in 2014–2017, a reversion to less 10 tons during the 2018–2019 fishing season, and then just 3.7 tons in the 2019 fishing season (Fig. 5). However, the catch increased significantly in the 2020 fishing season to 17.1 tons. The catch for the 2021 fishing season was 11.1 tons. Although the catch of glass eels shows fluctuations, these data for Japan indicate that the population has been experiencing a long-term decrease and now remains low. The population assessment of the species is challenging mainly because of its complex life cycle and numerous uncertainties related to its ecology. No assessment exists except for Tanaka (2014). In 2019, the Fisheries Agency of Japan launched a research project with the goal of developing a comprehensive assessment of Japanese eel populations.

Fisheries Management

As described above, the Japanese eel population size has been decreasing. A lack of progress has occurred in developing mathematical methods to predict population dynamics and management strate-
gies because it is difficult to understand the species’ biology completely and to identify causes of the population decline. It is necessary to mitigate risks leading to severe and irreversible effects (precautionary approach) (Gardiner, 2006). Consequently, Japan has taken comprehensive measures including population management and habitat restoration.

For example, Japan called upon the People’s Republic of China and Chinese Taipei to engage in an international discussion, the “Informal Consultation on International Cooperation for Conservation and Management of Japanese Eel Stock and Other Relevant Eel Species”, in September 2012. The Republic of Korea joined from the fourth meeting in September 2013. In 2014, Japan, China, Korea, and Chinese Taipei released a Joint Statement at the seventh meeting, restricting the input of eel seeds into aquaculture ponds: the amount of input of eel seeds for the 2014–2015 input season will be no more than 80% of that of the 2013–2014 input season. It follows that the upper limit of pond input in Japan was set at 21.7 tons. Thereafter, the upper limit of input in the next fishing season has been discussed every year through informal consultations. The limit has remained the same because no scientific evidence has been provided to change it. In addition, based on the Joint Statement, the Alliance for Sustainable Eel Aquaculture (ASEA) was established as an international group of eel management organizations from each country and region to discuss eel resource management on a private sector basis. As of October 2019 three meetings have been held under ASEA.

To implement the upper limit, Japan introduced a licensing system for eel aquaculture under the Inland Water Fishery Promotion Act in June 2015. The amount of initial input of eel seeds is restricted by eel species and is allocated for each farmer under this Act. Farmers are required to report their input amount and production amount to the central government every month.

The catch of glass eels is subject to licenses issued by prefectural governments. The fishing season duration is limited. Catches of adult eels using certain fishing gear are also subject to licenses issued by prefectural governments. Each prefecture is implementing various additional measures such as gear restriction, upper limits of harvest for individuals, and time closure for catches of both glass and adult eels, considering the unique situation in each prefecture. Recently, the prohibition of catching silver eels descending to spawn has been introduced in almost all prefectures where wild adult eels are distributed. To prevent poaching of glass eels, glass eels will be designated as “specified aquatic animals and plants” from December 2023, and penalties will be strengthened. By December 2023, the special catch permit for glass eels will be transferred to the governor–licensed fishery.

In addition to fisheries management, continuous efforts have been made towards the creation and conservation of favorable riverine environments. The concept of “nature-oriented river works” has been adopted in river management to conserve and create the habitat that rivers intrinsically have. A study from Lake Shinji suggests that the use of neonicotinoid pesticides since 1993 has caused declines in Japanese eel and Wakasagi populations by altering food web structure and dynamics (Yamamuro et al., 2019), hence the management of pesticides and other chemicals is also an important issue in inland habitats of Japanese eel.

For future work, it will be important to ascertain population trends and to work towards the sustainable harvest of Japanese eel. To achieve this, it will be necessary to improve the accuracy and timeliness of temporal and spatial data, expand our knowledge regarding the population genetic structure of the species, and use the best available data for development of a mathematical model for population management. Also, enhancing scientific cooperation and communication with other range states and areas will be important, for example holding regular scientific meetings.
Summary Table

<table>
<thead>
<tr>
<th>Resource level (over the past 20 years)</th>
<th>Under Investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource trend (in the past 5 years)</td>
<td>Under Investigation</td>
</tr>
<tr>
<td>World catch*1 (in the past 5 years)</td>
<td>119–154 tons, 121 t in 2019 (recent), and 130.4 t on average (2015–2019)</td>
</tr>
<tr>
<td>Japanese catch*2 (in the past 5 years)</td>
<td>65–78 tons, 65 t in 2020 (recent), and 70.2 t on average (2016–2020)</td>
</tr>
<tr>
<td>Management goals</td>
<td>Under review</td>
</tr>
<tr>
<td>Resource assessment methods</td>
<td>Under consideration</td>
</tr>
<tr>
<td>Resource status</td>
<td>Under discussion</td>
</tr>
</tbody>
</table>
| Control measures | Management of cultured seedlings in ponds
Prohibition of catching larvae (length restrictions based on fishery regulation)
Prohibition of catching parental eels descending to spawn
(Setting of non-fishing periods based on inland fishery management committee instructions, etc.) |
| Management organizations | The Informal Consultation on International Cooperation for Conservation and Management of Japanese Eel Stock and Other Relevant Eel Species |
| Up-to-date year of the resource evaluation | Under review |
| Next year of the resource evaluation | Under review |

*1 FAO (2021)

Citation: Hiroshi Hakoyama, Leanne Faulks, Sakie Kodama, Chiaki Okamoto, Hiroka Fujimori, Ayu Daryani, and Masashi Sekino, (2022) Japanese Eel (Anguilla japonica). In Fisheries Agency of Japan, and Japan Fisheries Research and Education Agency (eds.), Current Status of International Fishery Stocks in 2021. http://kokushi.fra.go.jp/R03/R03_82_ELJ_English.pdf
Figure 1: **Catches of yellow eels in Japan.**
Figure 2: **Aquacultural production of eels in Japan.**
Figure 3: Total seed catch (including glass eels and elver eels) in the sea and inland waters in Japan.
Figure 4: **Global catches of wild Japanese eel (including all stages).**
These data are based on FAO statistics (FAO, 2021).
Figure 5: **Global harvest of Japanese glass eels.**
These data are based on the Joint Press Release of the Informal Consultation on International Co-operation for Conservation and Management of Japanese Eel Stock and Other Relevant Eel Species (Fisheries Agency, 2017, 2021). For 2018 to 2021, data from China are not available.
Figure 6: **Glass eels**. Photo by Chiaki Okamoto.
Figure 7: Monthly glass eel harvest in Japan from the 2002–2003 fishery season through to the 2018–2019 season.

These data are based on the harvest reports subject to the special catch permission of the eel seedlings (glass eels) contingent on the prefectural fishery regulations.
Figure 8: Numbers of individuals by survey date obtained from Saigo River, Fukutsu City, and Fukuoka Prefecture (2019).
Figure 9: Distribution map of the Japanese eels (modified from Han et al., 2012; Tsukamoto et al., 2003).

Copyright © 2022 Fisheries Agency of Japan & Japan Fisheries Research and Education Agency
All rights reserved.
References

Eel Culture Research Council (1980). The 9th report of the eel culture research council.
URL: http://www.fao.org/

REFERENCES

Copyright © 2022 Fisheries Agency of Japan & Japan Fisheries Research and Education Agency
All rights reserved.
REFERENCES

Copyright © 2022 Fisheries Agency of Japan & Japan Fisheries Research and Education Agency All rights reserved.

URL: https://doi.org/10.1080/00288330.2019.1614075

Copyright © 2022 Fisheries Agency of Japan & Japan Fisheries Research and Education Agency. All rights reserved.
