東シナ海・黄海の漁業資源(総説)

東シナ海・黄海は大陸河川によって供給される豊かな栄養塩 を基礎として、黒潮系水と大陸沿岸系水との顕著な潮目の形成 も加わり、生産性が極めて高い海域と言われている。また、広 大な浅い砂泥域が広がっていることから、同緯度の他の海域か ら比べて二べ科魚類、ウシノシタ科魚類、マナガツオ科魚類、 カタクチイワシ科魚類等が種数・分布量ともに卓越している。 更に、黄海域には黄海中央底層冷水が周年存在することから、 マダラ、ニシン、ソウハチといった冷水性の魚類も分布する。 こういった多様な魚類相と高い生産性を背景として、当海域に 存在する漁業資源について我が国をはじめ中国、韓国等が利用 しており、東シナ海・黄海は典型的な国際入会(いりあい)漁 場となっている(図1)。国際連合食糧農業機関(FAO)統計 で東シナ海・黄海域を含む海域区分(北西太平洋)における日 本、中国及び韓国の国別漁獲量をみると、日本の漁獲量は1980 年代の我が国周辺でのマイワシ漁獲量の増大でピークを迎え た後、2000年代にかけて減少している一方、中国の漁獲量は 1980 年代後半以降大きく増大しているが、近年ではやや減少 に転じている。

韓国の東シナ海・黄海からの漁業生産は 1950 年代の 20 万トンから 1980 年代には 140 万トンに増え、過去 40 年間で 7倍の生産増大を見せた。しかし、このような生産増大も 1980年代後半からは 120 万~130 万トンの水準で足踏み状態になり、2000年代に入ってからは約 100 万トンの水準で推移したとみられている(図 2)。

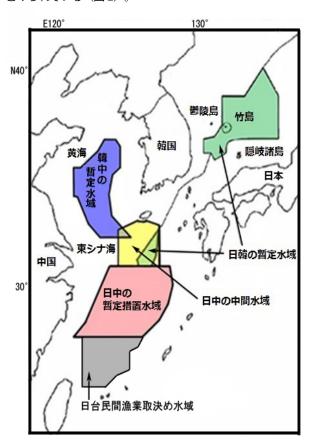


図 1. 東シナ海周辺における漁業関係模式図

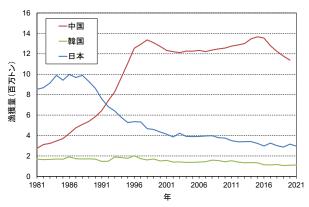


図 2.FAO 統計(北西太平洋区分)における日本、中国及び韓国の 総漁獲量(1981~2021 年)

一方、中国の漁業は、1950~1960年代は沿岸を中心とした 定置網(張網)と刺網が主な操業形態であったが、1960年代 末から2そうびき底びき網漁業が海面漁業の操業形態の主体 となっていった。それに伴い漁獲量もしばらくの間は増加を見 せていたが、1970年代後半から減少傾向に転じ、その後底び き網の漁船数を減らす等の措置がとられた。しかし、1980年 代からの国策転換に伴い、1985年に漁業の全面開放が行われ、 漁船数と馬力数の増加は再び勢いを増し、中国の海面漁獲量の 増加をもたらした。FAO統計における中国の統計値は改善が 必要とされているが(FAO 2020)、1990年代以降の中国の漁 獲量の増大は著しく、1990年代中頃から2015年頃までは 1200万トンを越える高水準で推移した。その後、近年はやや 減少している(図2)。

東シナ海・黄海における日本の代表的な漁業としては、歴史的に大中型まき網漁業と以西底びき網漁業が挙げられる。大中型まき網漁業は、サバ類・マアジを主対象とする西日本最大の漁業であり、基本的な漁場は隠岐諸島から尖閣諸島付近までの陸棚縁辺域と済洲島西部海域である。このうち、済洲島西部海域は主にマサバの漁場となる。大中型まき網漁業の総漁獲量の変化を長期的に見ると、変化の大きな要因はマイワシ資源の消長ではあるが、1990年代以降の漁獲努力量の減少も相まって総漁獲量は大きく減少し、2000年代に入ってからはほぼ横ばいで推移した。近年は一部の漁船が冬季に太平洋側に出漁することもあって漁獲量は再びやや減少傾向にある(図3)。

一方、以西底びき網漁業は 1960 年代に 30 万トン台、1975 年までは 20 万トン台の漁獲量を維持していたが、その後は一貫して減少傾向が続き、1988 年には 10 万トンを割り込み、2000 年以降は更に減少して 1 万トンを割り込むようになった(図 3)。漁獲量の減少とともに、当漁業が漁獲する魚種も年代によって大きく変わってきており、これは資源の悪化の反映であるとともに、操業水域が変化していった結果でもある。最盛期の 1960 年には、漁獲量上位 5 魚種はキグチ、タチウオ、ハモ、シログチ及びエソ類であり、すり身原料となる魚種が主体で、その漁獲量は 18 万トンで全体の 54%を占めていた。し

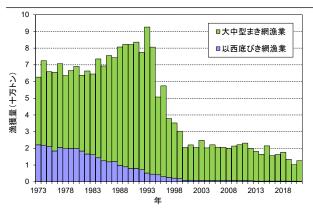


図 3. 以西底びき網漁業及び大中型まき網漁業の漁獲量の推移 (1973~2021年)

かし、現在はキダイやイボダイ等、我が国に近い大陸棚縁辺部の漁場に分布する魚種の割合が増加している。かつて東シナ海・黄海全域を利用していた以西底びき網漁業は、資源状態の悪化、各国漁業との漁場の競合や輸入水産物の増加といった要因により衰退し、現在では主に九州西岸沖の我が国排他的経済水域(EEZ)内を中心とする東シナ海陸棚縁辺部で操業する漁業に変化している。このように本海域では、かつては日本の漁獲量が最も多かったが、韓国や中国の漁業の発展に伴い、日本の漁獲量は他国に比べて少なくなっている。

このような日本、中国及び韓国による長期間の継続的で強い 漁獲圧により、当海域の漁獲対象種の生物学的・生態学的特性 には様々な変化が認められるようになった(堀川・山田 1999、 小西ほか 2001、密ほか 2001)。多くの魚種で資源状況の悪 化が認められているだけではなく、更に分布域の縮小、漁獲物 の小型化、成熟に達する体サイズの小型化、早熟化等が認められる魚種もみられる。

今まで日本では、以西底びき網漁業をはじめとする大規模漁業から東シナ海・黄海に関する多くの科学的情報を得てきたが、近年、東シナ海陸棚縁辺部だけで操業するようになった以西底びき網漁業等の情報のみでは東シナ海・黄海全域の資源を評価することは困難になった。そのため、調査船による資源調査の重要性が以前にも増して高まってきている。日中間では2002年より日中漁業共同委員会の下に日中海洋生物資源専門家小委員会が、日韓間では2004年より日韓漁業共同委員会の下に日韓海洋生物資源専門家小委員会が設置された。このような国際的枠組みを通じて、東シナ海・黄海での漁業資源の状況を可能な限り正確に把握し、それを適切に管理するために、沿岸国の協力の下、共同研究・共同調査を実施する体制が早急に整備されなければならない。

しかし、これまでに開催された日中海洋生物資源専門家小委員会では、タチウオ、サバ類等について資源状況に関する情報交換がなされてきたものの、中国側からは我が国における資源解析に利用できるような詳細な資料の提供はなされていない。なお、2017年4月に開催された第15回日中海洋生物資源専門家小委員会において、マサバの共同資源調査を進めることが合意されたことは一定の前進と考えられるが、それ以降動きがない。日韓海洋生物資源専門家小委員会においても、魚種別漁獲割当に関連したマアジ、マサバ、スルメイカ等の資源状態に

ついて情報提供が行われているが、日韓双方は、それぞれの評価単位や分析方法により資源状態を評価しているため、議論がかみ合わない部分がある。分析方法の統一等を行い、より有意義な資源議論を行うことが今後の課題となっている。なお、日韓漁業交渉では、現在、入漁条件について合意できておらず、2016年7月以降、相互入漁が一時中断しており、日韓のEEZ内における相手国側での操業は行われていない。また、このような状況もあり、日韓海洋生物資源専門委員会も開催されていない。日中漁業交渉においても、現在、入漁条件について合意できておらず、2017年6月以降、相互入漁が一時中断しており、日中のEEZ内における相手国側での操業は行われていない。2018年5月に、第16回日中海洋生物資源専門家小委員会が開催されて以降、動きはない。

タチウオ (Largehead hairtail *Trichiurus japonicus*)

漁業の概要

タチウオはかつて以西底びき網漁業の主要漁獲物であり、1980年代までは我が国のタチウオ漁獲量の7~8割を同漁業が占めていた。以西底びき網漁業による本種の漁獲量は1967年には5万トン以上を記録したが、その後急減し1996年には1,000トンを下回り、2002年以降は50トン未満で推移している。日本海西部海域における沖合底びき漁業による漁獲量も1983年の594トンから著しく減少し、2005年以降はおおむね100トン未満で推移している。1995年以降は大中型まき網漁業による漁獲が以西底びき網漁業を上回るようになったが、2007年の1,132トンを除いて、2002年以降の漁獲量は1,000トンを下回って推移している。タチウオに対する近年の我が国の主な漁業は、まき網、ひき縄及び釣りである。我が国の総漁獲量は近年2,000トン前後で推移しており、2021年にはやや増加して3,253トンとなった(図41)。

韓国は、日韓暫定水域を除く我が国 EEZ において、我が国に 匹敵する漁獲をしていたが、入漁条件について合意できていな いために、2016年7月以降、日韓漁船による相互入漁は一時 中断しており、日本 EEZ 内での韓国漁船の操業は行われてい ない。韓国のタチウオの漁獲量は、1983年の15万トンから減 少し、1996年から2009年までは6万~9万トンで推移し、そ の後2012年に3.3万トンまで減少した。近年は3万~5万ト

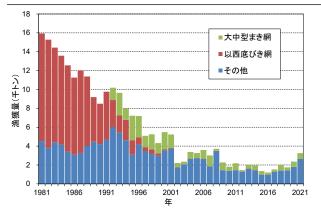


図 4-1. 我が国のタチウオ日本海・東シナ海系群の漁獲量 (1981~2021 年)

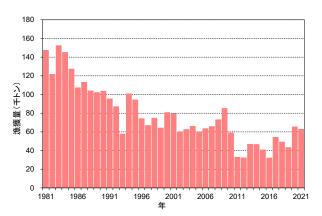


図 4-2. 韓国のタチウオ漁獲量(1981~2021年)

ンで推移し、2021年は6.3万トンであった(図4-2)。

一方、中国は、1995年以降、ほぼ毎年100万トン以上のタチウオを漁獲していたが、近年はやや減少傾向にあり2020年は90万トンであった。うち東シナ海で漁獲したものは70万トン前後であると推定される。本種の系群については、かつて冬季に済州島西部で越冬する黄・渤海系群と、バーレンから温州湾沿岸で産卵し、東シナ海中・南部で越冬する東シナ海系群に分けるのが妥当であるとされてきたが(密ほか2001)、近年の卵稚仔調査結果等から東シナ海、黄・渤海から対馬暖流域に至る個体群を一つの集団とし、日本海・東シナ海系群として取り扱うことが妥当と考えられる。したがって系群全体で見ると、主に中国が漁獲しているといえる。

生物学的特性

本系群の成長を図5に示す。タチウオの耳石には、春生まれとされる第1輪の輪径が大きいW型と秋生まれとされる第1輪の小さいN型が存在する。寿命は約8歳であり、成熟は1歳の一部で始まり、3歳には全ての個体が成熟に達する(図5)。主な産卵場は中国沿岸域であるが、日本の沿岸域でも産卵する。産卵期は長く春から秋に及び、盛期は春と秋に分かれる。東シナ海での越冬場は東シナ海中・南部だが、日本海沿岸にも分布する(図6)。主な餌生物は、小型個体ではアミ、オキアミ等の小型甲殻類であるが、大型個体(肛門前長250mm程度以上)は魚類を捕食する。

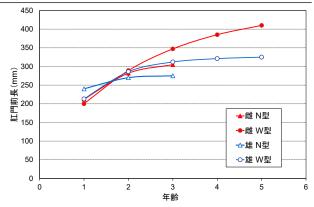


図 5. タチウオの成長 (W型:春生まれ群、N型:秋生まれ群)

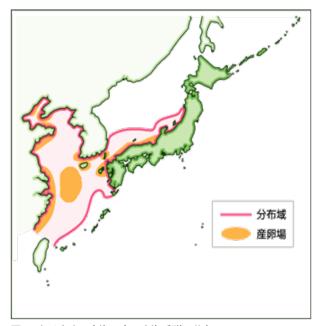


図 6. タチウオ日本海・東シナ海系群の分布

資源狀態

以西底びき網漁業(2 そうびき)全体及び沖合底びき網漁業(2 そうびき)の漁獲量及び網数を用いて、多変量時系列状態空間モデル(Multivariate Auto-Regressive State-Space:MARSS)により計算した資源量指数は低位で(図 7-1)、調査船調査による現存量推定値からも水準回復は見られないことから(図 7-2)、我が国 EEZ の資源水準は低位と判断される。この資源量指数及び調査船調査による現存量推定値から、動向は横ばいと判断される。

Xu et al. (2003) は、東シナ海と黄海南部の中国漁獲に対してコホート解析を行い、1995 年の夏季休漁導入直後から親魚量当たり加入量は増加したものの、漁獲努力量が大きいため漁獲物の若齢化・小型化が見られる等、資源は不安定であることを示し、資源回復のためには漁獲強度を減じ、高齢魚の比率を増加させる必要があるとした。また、Ling et al. (2008) も東シナ海のタチウオの資源利用状況について解析し、漁獲物がほとんど 0~1 歳で占められる現状においては、漁獲圧を下げつつ漁獲開始年齢を引き上げることが資源の持続的利用に有効

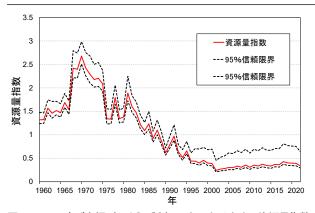


図 7-1. 以西底びき網(2 そうびき)によるタチウオの資源量指数 (1959~2021 年、MARSS モデル)

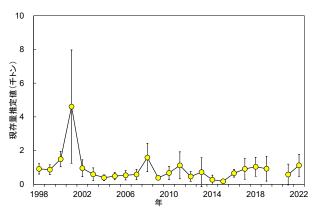


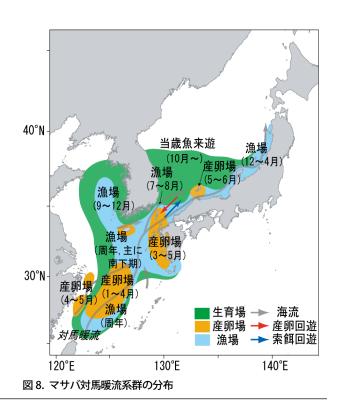
図 7-2. 調査船トロール調査に基づく東シナ海タチウオの現存量 推定値 (1998~2022 年)

としている。Park *et al.* (2001) は、韓国海域のタチウオ資源 には高い漁獲圧がかかっており、資源量は 1980 年代初期の約 30 万トンから 1997 年の 10 万トン以下まで減少しているとした。

我が国においては現在、タチウオを主対象とする大規模な漁業は行われておらず、主として周辺国による高い漁獲圧により資源状態が悪化してきたものと判断される。

管理方策

近年、日中韓三国の漁獲量は合計 100 万トン前後で推移しているが、本系群全体については資源水準・動向の指標値が存在しないため、現在の資源水準について関係国間で見解が一致していない。このため包括的な資源管理方策が行われていないのが現状であり、早急に関係国が共有可能な客観的手法による資源判断基準を作る必要がある。また、資源回復に向けて、関係各国との連携により東シナ海全域での漁獲圧を削減することが不可欠である。近年、中国においても浙江省を中心にタチウオを主対象とした漁獲圧削減の取り組みが行われるようになった。また、我が国 EEZ における資源は長期にわたり低位水準にある。漁獲圧をより下げることで、我が国周辺海域に来遊した資源を適切に利用し、かつ我が国周辺海域で再生産を行う親魚を保護することが重要である。


マサバ (Chub mackerel *Scomber japonicus*)

漁業の概要

東シナ海及び日本海における我が国のマサバ漁獲の大部分はまき網漁業によるもので、近年では同海域で操業する大中型まき網漁業の漁獲量の2~3割を本種が占める。主漁場は東シナ海から九州北~西岸・日本海西部である(図8)。それまでの大中型まき網漁業の漁場(海区制)内の許可隻数の制限に加え、1997年から、ゴマサバとあわせてサバ類について総漁獲可能量(TAC)による資源管理が実施されている。

我が国の漁獲量は、1970 年代後半は約 30 万トンであったが、1990~1992 年は約 14 万トンに減少した。1993 年以降、増加傾向を示し、1996 年には 41 万トンに達したが、再び減少し、2000~2006 年は 9 万トン前後で推移した。2007 年以降は増減を繰り返し、2013 年には 6 万トンと 1973 年以降で最も低い値となったがその後増加に転じ 2019 年は 10.1 万トンであった。2020 年は 8.0 万トンと減少し、2021 年は 9.1 万トンであった(図 9)。近年太平洋側のマサバ漁況が東シナ海に比べて良好であることから、大中型まき網の一部がマサバの漁

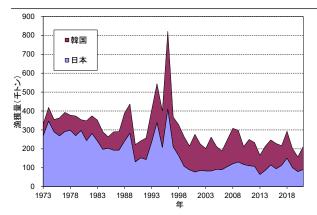


図 9. マサバ対馬暖流系群の漁獲量(1973~2021年)

期に太平洋側で操業し、東シナ海での漁獲努力量は減少傾向にある。なお、韓国内の済州島西側海域はマサバ漁場として我が国漁船によっても利用されてきたが、入漁条件について合意できていないため、2016年7月以降、日韓漁船による相互入漁は一時中断しており、韓国 EEZ 内での我が国漁船の操業は行われていない。

韓国は、マサバを 2008 年に 19 万トン、2009 年に 17 万トン漁獲していたが、2010 年の漁獲量は 9.4 万トンに減り、2011 年以降は 10 万トン台前半で推移している。 2021 年の漁獲量は 12.2 万トンであった(図 9)。

一方、中国は、FAO 統計によると 2010 年以降、北西太平洋全体で 50 万トン前後のサバ類を漁獲したとされており、2020年のサバ類漁獲量は 39 万トンであったが、マサバとゴマサバの魚種別漁獲量は不明である。近年、東シナ海で操業する中国漁船操業の形態が虎網中心へと変化した。中国政府は虎網漁船の削減の方針を打ち出しているものの、依然としてマサバへの漁獲圧は高いと推定されるため、サバ類等の資源に及ぼしている影響への懸念が強まっている。

生物学的特性

寿命は約6歳であり、1歳で尾叉長25~28cm、5歳で約37cmに達する(図10)。1歳で60%、2歳で85%、3歳で100%の個体が成熟する。産卵は春季(盛期3~5月)に行われ、東シナ海南部の中国沿岸から東シナ海中部、朝鮮半島沿岸、九州・山陰沿岸の広い海域で行われる。春夏に索餌のために北上回遊を行い、秋冬に越冬・産卵のために南下回遊をする。オキアミ類、アミ類、カイアシ類等の浮遊生甲殻類と小型魚類を摂餌する。

資源状態

資源計算は、日本と韓国の漁獲情報に基づいて行われている。 資源量は 1973~1989 年には 100 万トン前後で比較的安定していたが、2000 年以降は 50 万トン前後に留まっている。しかし 2014 年以降の高加入により資源量は増加し、2018 年には67 万トンまで回復した。2020 年は43 万トンと減少し、2021年は53 万トンであった。漁獲割合は1995年以降40~50%と比較的高い水準で推移していたが、2014年と2017年にやや低下した。2021年は40%であった(図11)。親魚量は、1997

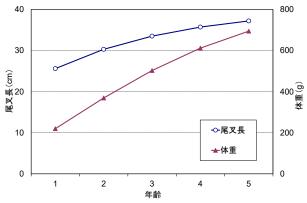
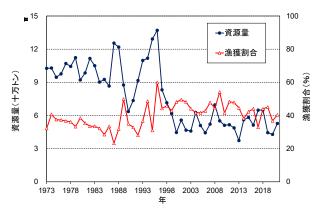
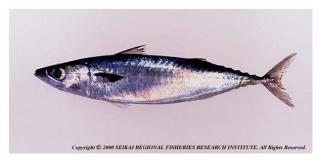


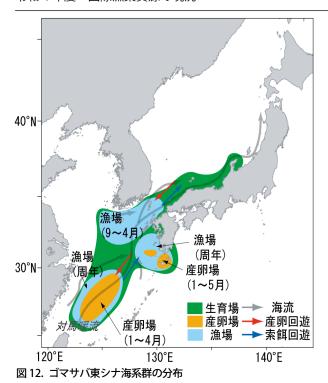
図 10. マサバの成長




図 11. マサバ対馬暖流系群の資源量と漁獲割合(1973~2021年)

年以降低い値が続いていたが、2016年は17万トンまで回復し、近年は横ばい傾向にある。

管理方策


我が国では目標管理基準(最大持続生産量(MSY)が基本)を定め、限界管理基準と禁漁水準を設定したうえで、目標管理基準への回復を図る方策を策定している。現状では目標管理基準値は親魚量で31.0万トンとされており、2030年までにこれを達成するための管理方策が決められている。

ゴマサバ (Spotted mackerel *Scomber australasicus*)

漁業の概要

東シナ海及び日本海の我が国のゴマサバ漁獲の大部分はまき網漁業によるものである。主漁場はマサバよりやや南方に分

布し、東シナ海から九州南部沿岸域である(図 12)。それまでの大中型まき網漁業の漁場(海区制)内の許可隻数の制限に加え、1997年からマサバとあわせてサバ類について TAC による資源管理が実施されている。

東シナ海及び日本海における我が国のゴマサバ漁獲量は、年変動はあるものの、1980年代以降、およそ5万トン前後で推移していた(図13)。近年では2011年の4.9万トンをピークにやや減少した後、3万トン台で推移し、2021年は2.4万トンであった。韓国の漁獲量は日本に比べて変動が大きく、2015年に9千トンであったゴマサバ漁獲量が2016年に2.2万トンに急増し、2017年には1.1万トンと平年並みの水準となった。その後、2018年に過去最大の7万トンとなった後、2020年は5千トンに減少し、2021年は2.9万トンであった。中国のゴマサバ漁獲量は不明であるが北西太平洋全体では2020年に39万トンのサバ類を漁獲した。

生物学的特性

寿命は約6歳であり、成長は1歳で尾叉長約28cm、5歳で約39cmに達すると推測される(図14)。産卵は1~4月に東シナ海中部・南部から九州南部沿岸、5月に東シナ海中部から九州西岸で行われる。春夏に索餌のために北上回遊を行い、秋冬に越冬・産卵のために南下回遊をする。マサバよりやや南方域に分布するのが特徴である。幼魚はイワシ類の仔稚魚、浮遊性の甲殻類等、成魚は動物プランクトンや小型魚類を捕食する

資源状態

資源量の推定は、日本と韓国の漁獲情報に基づいて行われている(図 15)。 資源量は 1992 年以降、10万~20万トン程度で比較的安定していた。2007年には10万トンを下回ったが、

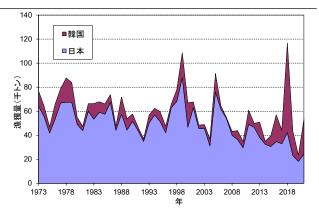


図 13. ゴマサバ東シナ海系群の漁獲量 (1973~2021年)

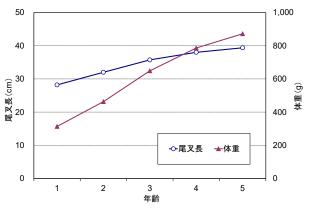


図 14. ゴマサバの成長

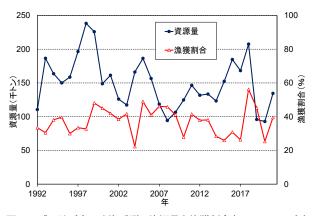


図 15. ゴマサバ東シナ海系群の資源量と漁獲割合(1992~2021年)

2018 年の韓国のゴマサバ漁獲量の急増から、資源量は増加したものと推定され、2018 年の資源量は 20.1 万トンまで増加した。しかし、2019 年は 9.3 万トン、2020 年は 9.2 万トンに減少し、その後 2021 年に 13.4 万トンまで増加した。加入量は 2009 年以降 2.5 億尾前後で推移したが、2020 年は 1.8 億尾、2021 年は 3.1 億尾であった。親魚量は 2012 年以降 2015 年まで 5 万トン前後で横ばいであり、2020 年は 3.4 万トン、2021年は 4.1 万トンであった。

管理方策

我が国では目標管理基準 (MSY が基本) を定め、限界管理基準と禁漁水準を設定したうえで、目標管理基準への回復を図る方策を策定している。現状では目標管理基準値が親魚量で 10.9

万トンとされており、2030年までにこれを達成するための管理方策が決められている。

執筆者

東アジアユニット 水産資源研究所 水産資源研究センター 浮魚資源部 大下 誠二

参考文献

- FAO. 2020. The state of world fisheries and aquaculture 2020. http://www.fao.org/3/a-i2727e.pdf(2020 年 12 月 9 日)
- 堀川博史・山田梅芳. 1999. 東シナ海および黄海における底魚 類の生物特性の変化. 月刊海洋, 31:631-636.
- 小西芳信・陳 衛忠・大下誠二・孟 田湘.2001. キダイの生物・ 生態特性.In 堀川博史・鄭 元甲・孟 田湘(編), 東シナ海・

- 黄海主要資源の生物・生態特性—日中間の知見の比較. 西海区水産研究所, 長崎. 191-202 pp.
- Ling, J.-Z., Li, S.-F., Yan, L.-P., and Cheng, J.-H. 2008. Utilization and management of *Trichiurus japonicus* resources in East Hinga Sea based on Beverton-Holt model. Chin. J. Appl. Ecol., 19: 178-182.
- 密 崇道・山田梅芳・兪 連福・堀川博史・時村宗春.2001. タチウオの生物・生態特性. In 堀川博史・鄭 元甲・孟 田湘(編), 東シナ海・黄海主要資源の生物・生態特性—日中間の知見の比較. 西海区水産研究所, 長崎.165-190 pp.
- Park, C.S., Lee, D.W., and Zhang, C.I. 2001. Population characteristics and biomass estimation of hairtail *Trichiurus lepturus* Linnaeus in Korean waters. Bull. Nat'l. Fish. Res. Dev. Inst. Korea, 59: 1-8.
- Xu, H.-X., Liu, Z.-F., and Zhou, Y.-D. 2003. Study on the variation of hairtail (*Trichiurus haumela*) productivity and recruitment in the East China Sea., J. Fisher. China, 27: 322-327.