
# オナガザメ類 全水域

ニタリ (Pelagic thresher *Alopias pelagicus*)

ハチワレ (Bigeye thresher *Alopias superciliosus*)

マオナガ (Common thresher Alopias vulpinus)



# 管理・関係機関

国際連合食糧農業機関(FAO)

中西部太平洋まぐろ類委員会(WCPFC)

大西洋まぐろ類保存国際委員会(ICCAT)

インド洋まぐろ類委員会(IOTC)

みなみまぐろ保存委員会(CCSBT)

絶滅のおそれのある野生動植物の種の国際取引に関する条約(ワシントン条約:CITES)

## 最近の動き

2022 年には世界的に見て資源評価に関する目立った動きは無かった。

# 利用・用途

肉は生鮮食品や燻製、塩干物として消費される。 鰭はフカヒレスープの原料、皮は革製品の材料として利用されるほか、肝臓からはビタミン類が抽出される。

## 漁業の概要

日本の主要漁港におけるまぐろはえ縄等によるサメ類の種別水揚量は、水産庁による委託事業「日本周辺高度回遊性魚類資源調査委託事業(平成12~17年度)」、「日本周辺国際魚類資源調査(平成18年度~27年度)」、「国際漁業資源評価調査・情報提供事業 現場実態調査(平成28年度~平成29年度)」及び「水揚げ地でのまぐろ・かじき・さめ調査結果(平成30~31年度、令和2~3年度)」によって調査が行われている。1992~2021年におけるオナガザメ類の総水揚量は39~706トンで、その内、はえ縄による水揚量が34~591トンと大部分を占めており(1992~2021年:オナガザメ類総水揚量の約89%)、次に流し網による水揚量が多かった(オナガザメ類総水揚量の約89%)、次に流し網による水揚量が多かった(オナガザメ類総水揚量の約11%)。時系列で見ると、オナガザメ類の水揚量は1992年の706トンをピークとして、2012~2013年

の120トン前後まで緩やかに減少傾向を示したが、2014年の水揚量は153トンと前年を若干上回った。2015年には102トンと減少したが、2016年には157トンに増加した。2018年の報告値は前年(2017年:153トン)から56トンまで大きく減少し、2019年には94トンに増加したが、その後は減少傾向を示している(図1)。2021年の水揚げは前年より39トン減の39トンとなっている。この減少は、はえ縄による水揚量が大きく減少したことによると考えられる。水揚げの多くを占めるはえ縄漁業のうち、近海はえ縄漁業と沿岸はえ縄漁業の漁船隻数を年別に集計した結果、調査期間を通じて減少傾向を示しており、努力量の減少が水揚量の減少の一因である可能性が考えられる(図1)。サメ類の総水揚量に占めるオナガザメ類の割合は1992年の4.0%から減少傾向を示し、2020年には0.4%となっている。

米国西岸では、マオナガを対象とした流し網漁業や遊漁が存在し、流し網漁業では1980年代初期には1,800トンが水揚げされていたが、漁獲対象の転換や資源保護のための規制によって、2008~2009年には200トン以下となっている。豪州においては、オナガザメ類は遊漁の対象となる他、2011年初期まではインド洋に面する国々で地域的に消費され、欧州のマーケ

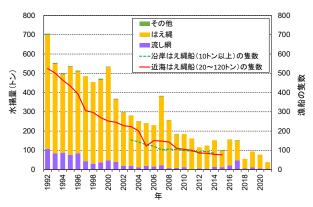



図 1. 日本の主要漁港へのオナガザメ類の水揚量 (1992~2021年)

ットでも食用として流通していたことが知られている (IOTC 2016a、2016b)。

# 生物学的特性

#### 【分布】

ニタリは主に熱帯〜亜熱帯の外洋域に分布するが、時に沿岸近くに出現することもある。ハチワレは世界の熱帯〜温帯の外洋域及び沿岸域に分布する。マオナガは、熱帯〜温帯の冷水域に広く分布するが、主な出現は温帯域であり、沿岸性が強いとされる(図 2)。鉛直分布については、ニタリは表層〜水深 152 m、ハチワレが最も深く表層から少なくとも水深 500 m(多くの場合、100 m 以深)、マオナガは表層〜水深 366 m(多くの場合、表層に分布)と報告されている(Compagno 2001)。マーシャル諸島近海で行われた、はえ縄漁具を日中に浸漬した調査では、ハチワレは水深 240〜360 m、水温 10〜16℃、マオナガは水深 160〜240 m、水温 18〜20℃の環境で漁獲率が高いことが示されている(Cao et al. 2011)。北西大西洋で報告されたマオナガの漁獲記録では、12〜18℃の表面水温での漁獲が多い(Kneebone et al. 2020)。

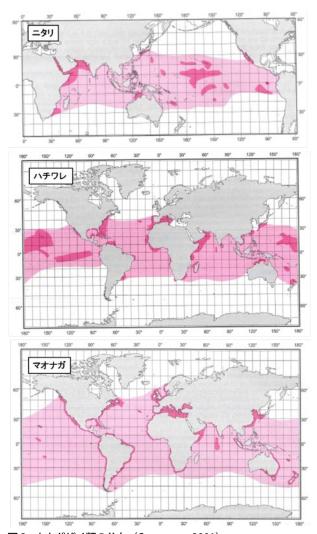



図 2. オナガザメ類の分布 (Compagno 2001) 色の濃い部分は信用できる情報に基づく既存の分布あるいは確かに分布していると思われるエリア、薄い部分は分布が推定されるもしくは不確実な情報に基づく分布エリアを示す。

メキシコ湾及び太平洋で行われたポップアップアーカイバルタグ及び超音波発信器による行動研究によれば、ハチワレの遊泳深度(図 3)は成長段階によらず、夜間(10~130 m)よりも日中(200~500 m)の方が深いこと(Nakano etal.2003、Weng and Block 2004)、これに伴い分布水温は夜間(メキシコ湾、ハワイ:20~26°C)の方が日中(メキシコ湾:6~12°C、ハワイ:6~26°C)よりも高いことが示されている(Weng and Block 2004)。また、東部太平洋の南部カリフォルニアの湾曲部(Southern California Bight)及び大西洋熱帯域で行われた調査においても、同様の日周鉛直移動が確認されている(Aalbers etal.2021、Coelho etal.2015)。

カリフォルニア南部で行われたアーカイバルタグ及び超音 波発信器による行動研究によれば、マオナガは大陸棚上の浅い 海域を避け、沖合の深い場所を好み、日中は水温躍層の下もしくは躍層の上部を遊泳し夜間は躍層の上、混合層に留まることが明らかになった(Cartamil et al. 2010a、2011)。また、未成 魚については、多くの時間を大陸棚上で過ごし、個体によっては生息場所に高い定住性を示すこと、鉛直的には表層 20 m に分布が限られること、昼の分布水深は夜よりも深いことがわかっている(Cartamil et al. 2010b)。また、追加の調査では、日中50 m 以上の水深まで頻繁な鉛直移動を行い、最大192 m まで移動すること、14~17℃の水温との関係性が最も高いこと、鉛直的な移動の範囲は体サイズに比例しないこと等が報告されている(Cartamil et al. 2016)。インド洋南東部で行われた調査では、マオナガの日周鉛直移動は餌生物の日周鉛直移動によって説明できることが示唆されている(Heard et al. 2018)。

フィリピンのセブ島とレイテ島付近で行われた調査によれば、音響タグを装着された二タリ (14 個体) は追跡期間の 32% を海山で過ごし、42%の個体は追跡終了の際にこの場所にいることが確認されており、海山の特定の場所を好むことが示された (Oliver et al. 2019) 。 紅海で行われた研究によれば、電子標識を装着された二タリは日周鉛直移動を行い、日中は深度 200~300 m、夜間は深度 50~150 m に分布すること、これらの行動は溶存酸素量や中深層性魚類の鉛直移動と関連している可能性が指摘されている(Arostegui et al. 2020)。

太平洋における日本のはえ縄調査データの解析によれば、ハ

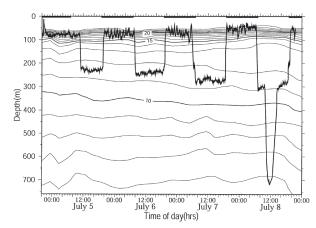



図 3. ハチワレの日周鉛直移動 (Nakano et al. 2003) 縦軸が遊泳水深、横軸は日にちと時刻を示す。図中の曲線は水温 の等深線を示す。

チワレの CPUE は熱帯域(北緯 10~15 度、南緯 5~10 度)で高いこと、低緯度では幼魚や未成魚が多く出現し高緯度になるほど大型個体の割合が高くなることが示唆されている(Matsunaga and Yokawa 2013)。インド洋においても同様の傾向が見られる上、海域や体長階級によって性比が異なることが示されている(Fernandez-Carvalho et al. 2015b)。マオナガについても、インド洋北西部や北米西岸において水平・鉛直方向における性的棲み分けの存在が指摘されている(Compagno 2001)。

系群構造に関しては殆ど研究が行われていないが、近年のミトコンドリア DNA 及びマイクロサテライト(核 DNA)を用いた研究によれば、ニタリは太平洋の東部と西部で大きく遺伝的組成が異なることが明らかになっている(Cardenosa et al. 2014)。また、ミトコンドリア DNA の調節領域を用いて大西洋とケープタウン東沖(インド洋海域)で漁獲されたハチワレを用いた分析において、地理的に明瞭な区分は認められず、対象海域内には明瞭な系群構造は確認されていない(Morales et al. 2018)。

#### 【産卵・回遊】

ニタリ、ハチワレ、マオナガの繁殖様式はいずれも卵食・共 食い型の非胎盤型胎生(Otake and Mizue 1981、Gilmore 1983、 Moreno and Moron 1992、Chen et al. 1997、Liu et al. 1999、 White 2007, Natanson and Gervelis 2013, Varghese et al. 2017) である。産仔数の範囲は、ニタリが2尾(Otake and Mizue 1981、 Liu et al. 1999、White 2007、Romero-Caicedo et al. 2014、 Varghese et al. 2017) 、ハチワレが 2 尾(最頻値、レンジは 2 ~4 個体)(Moreno and Moron 1992)、Chen et al. 1997、 White 2007、Varghese et al. 2017)、マオナガが平均 3.7 尾 (Natanson and Gervelis 2013) ないし 4 尾 (Mancini and Amorim 2006) と推定されている (表 1)。出生時の体長は、 ニタリが全長 130~190 cm (Liu et al. 1999、Compagno 2001、 White 2007, Romero-Caicedo et al. 2014, Varghese et al. 2017), ハチワレが全長 100 ~135 cm (Moreno and Moron 1992、 Varghese et al. 2017) 、尾鰭前長 135~140 cm(Chen et al. 1997)、マオナガが全長 114~160 cm (Compagno 2001) で (表 1) 、妊娠期間はニタリが 9 か月(Romero-Caicedo et al. 2014)、ハチワレが 12 か月(Compagno 2001)、マオナガが 9か月(Cailliet and Bedford 1983)と推定されている。

交尾・出産期及び繁殖周期については、ニタリでは明瞭な交 尾・出産期は報告されていないが (Liu et al. 1999、White 2007、 Varghese et al. 2017)、東部太平洋では、胎仔の発達の同調性 から出産期の季節性を示唆する報告もある(Romero-Caicedo et al. 2014)。繁殖周期については、妊娠個体が周年観察され ていることや、胎仔と母体の卵巣卵の発達が同調していること から、休止期を挟まず毎年出産を行っている可能性が示唆され ている (Liu et al. 1999、Romero-Caicedo et al. 2014、Varghese et al. 2017)。ハチワレでは、出産は季節性がなく周年行って いると推定されているが (Chen et al. 1997、White 2007、 Varghese et al. 2017)、東部大西洋では秋~冬期の出産が他の 時期に比べて多いと報告されている(Moreno and Moron 1992)。繁殖周期については、胎仔と母体の卵巣卵の発達が同 調していることから、休止期を挟まず毎年出産を行っている可 能性が示唆されている(Varghese et al. 2017)。マオナガでは、 東部太平洋において夏期(7~8月)に交尾後、9か月の妊娠期 間を経て春期(3~6月)に出産すると推定されている一方 (Cailliet and Bedford 1983) 、大西洋では、5~8月 (Mancini and Amorim 2006、Natanson and Gervelis 2013)の出産期を 経て交尾は秋に行われること、休止期を伴うため出産は毎年行 われない可能性が指摘されている(Natanson and Gervelis 2013) 。

ハチワレではイベリア半島南西部の沖合(Moreno and Moron 1992)が、マオナガではカリフォルニア南部等、温帯域の沿岸域(Compagno 2001、Cartamil *et al.* 2010b)が生育場と考えられている。

マオナガについては、北米西岸の個体群は季節回遊を行うと言われており、春季にバハ・カリフォルニアからカリフォルニア沖に北上し夏の間沿岸域に高密度に分布する。Kinney et al. (2020) によれば、Southern California Bight には様々な成長段階のマオナガが確認されること、マオナガ未成魚は当該海域に周年分布するが、亜成魚や成魚は春や夏には Bight 外に移動すると推定されている。成熟雄は雌よりも北上しブリティッシュコロンビアまで到達するが、未成魚は低水温耐性が弱いためカリフォルニア中央部より北に移動することはなく、沿岸域の暖かく水深の浅い場所で多く見られる(Compagno 2001)。北米東岸では、深度 200 m 以浅の沿岸域に主に分布し、雌雄や成長段階を問わず、夏に北上し冬に南下する季節的南北移動を示すことが報告されている(Kneebone et al. 2020)。

| 表 1. オナガザメ類 3 種の繁殖様式、産仔数、出生時の |
|-------------------------------|
|-------------------------------|

| 種名   | 繁殖様式       | 産仔数(平均と範囲) | 出生時の体長            | 出典                          |
|------|------------|------------|-------------------|-----------------------------|
| ニタリ  | 非胎盤型胎生、卵食型 | 2尾         | -                 | Otake and Mizue 1981        |
|      |            |            | 158~190 cm (全長)   | Liu <i>et al</i> . 1999     |
|      |            |            | 130~160 cm (全長)   | Compagno 2001               |
|      |            |            | 130~144 cm (全長)   | White 2007                  |
|      |            |            | 136~142 cm (全長)   | Romero-Caicedo et al . 2014 |
|      |            |            | 137.8~142 cm (全長) | Varghese et al . 2017       |
| ハチワレ | 非胎盤型胎生、卵食型 | 2尾(2~4尾)   | 100 cm (全長)       | Moreno and Moron 1992       |
|      |            |            | 135~140 cm (尾鰭前長) | Chen et al . 1997           |
|      |            |            | _                 | White 2007                  |
|      |            |            | 118~135 cm (全長)   | Varghese et al . 2017       |
| マオナガ | 非胎盤型胎生、卵食型 | 約4尾(1~4尾)  | 114~160 cm (全長)   | Compagno 2001               |
|      |            |            |                   | Mancini and Amorim 2006     |
|      |            |            |                   | Natanson and Gervelis 2013  |

#### 【成長・成熟】

脊椎骨に形成される輪紋から年齢が推定されており、ニタリについては Liu *et al.* (1999) と Drew *et al.* (2015) がそれぞれ台湾近海、インドネシア近海で漁獲された個体について(図4)、ハチワレについては Liu *et al.* (1998)、Fernandez-Carvalho *et al.* (2011)、Fernandez-Carvalho *et al.* (2015a) がそれぞれ台湾近海、北東大西洋の熱帯域、大西洋全域で漁獲された個体を対象として(図5)、マオナガについては Smith *et al.* (2008) が北東太平洋、Gervelis and Natanson (2013) 及び Natanson *et al.* (2015) が北西大西洋で漁獲された個体を対象として(図6)、成長式を推定している。

成熟体長は、ニタリでは雄が全長 254.96~276 cm (Liu et al.

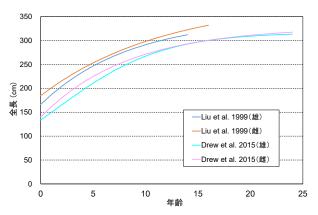



図 4. ニタリの成長曲線(Liu *et al.* 1999、Drew *et al.* 2015 より引用)

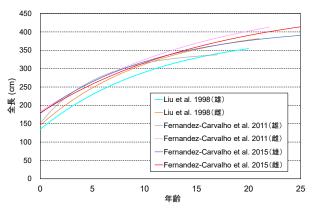



図 5. ハチワレの成長曲線(Liu *et al.* 1998、Fernandez-Carvalho *et al.* 2011、2015a より引用)

1999、White 2007、Romero-Caicedo et al. 2014、Varghese et al. 2017) 、尾鰭前長 136.0~144.3 cm(Romero-Caicedo et al. 2014、Briones-Mendoza et al. 2022)、雌が全長 282~292 cm (Liu et al. 1999, White 2007, Romero-Caicedo et al. 2014, Varghese et al. 2017) 、尾鰭前長 151.4 cm(Romero-Caicedo et al. 2014)、ハチワレでは、雄が全長 263.5~287.6 cm (Moreno and Moron 1992、Chen et al. 1997、White 2007、Varghese et al. 2017)、尾叉長 159.2 cm (Fernandez-Carvalho et al. 2015b)、 尾鰭前長 138.7 cm(Briones-Mendoza et al. 2022)、雌が全長 310.69~341.1 cm (Chen et al. 1997, Varghese et al. 2017), 尾叉長 208.6 cm(Fernandez-Carvalho et al. 2015b)、マオナ ガでは、雄が全長 293~311 cm (Smith et al. 2008) 、尾叉長 181~198 cm(Natanson and Gervelis 2013)、雌が全長 303 cm(Smith et al. 2008)、尾叉長 208~224cm(Natanson and Gervelis 2013)と推定されている。成熟年齢は、ニタリでは雄 が 7~8 歳(Liu *et al.* 1999)~10.4 歳(Drew *et al.* 2015)、雌 が 8.0~9.2 歳 (Liu et al. 1999) ~13.2 歳 (Drew et al. 2015) 、 ハチワレでは雄が 9~10 歳 (Liu et al. 1998)、雌が 13.4 歳 (Liu et al. 1998)、マオナガでは雄が 4.8 歳(Smith et al. 2008)~ 8歳(Natanson et al. 2015)、雌が 5.3歳(Smith et al. 2008) ~13 歳 (Natanson et al. 2015) と推定されている。

なお、上記の体長については、測定部位が尾鰭前長、尾叉長、 全長と、様々であるため、これまで公表されている測定部位間 の換算式を表 2 に引用する。

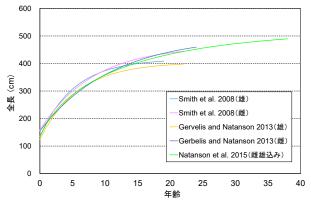



図 6. マオナガの成長曲線(Smith *et al.* 2008、Gervelis and Natanson 2013、Natanson *et al.* 2015 より引用)

表 2. オナガザメ類 3 種の体長測定部位間の換算式

| 種名   | 測定部位<br>(x-y) | 換算式                            | 調査海域  | 出典                             |
|------|---------------|--------------------------------|-------|--------------------------------|
| ニタリ  | PCL-TL        | 雌:TL = 2.34 + 1.93 × PCL       | 北西太平洋 | Liu <i>et al</i> . 1999        |
|      | PCL-TL        | 雄:TL = 2.33 + 1.89 × PCL       | 北西太平洋 | 同上                             |
|      | TL-PL         | 雌:TL = 23.009 + 1.7146 × PL    | 東部太平洋 | Romero-Caicedo et al . 2014    |
|      | TL-PL         | 雄:TL = 18.044 + 1.7362 × PL    | 東部太平洋 | 同上                             |
| ハチワレ | PCL-TL        | 雌:TL = 15.3 + 1.81 × PCL       | 太平洋   | Liu et al . 1998               |
|      | PCL-TL        | 雄:TL = 15.1 + 1.76 × PCL       | 太平洋   | 同上                             |
|      | FL-TL         | 雌:TL = 13.3 + 1.69 × FL        | 太平洋   | 同上                             |
|      | FL-TL         | 雄:TL = 26.3 + 1.56 × FL        | 太平洋   | 同上                             |
|      | TL-FL         | 雌雄込み:FL = 4.83 + 0.58 × TL     | 大西洋   | Fernandez-Carvalho et al. 2011 |
| マオナガ | TL-FL         | 雌雄込み:FL = 16.466 + 0.5168 × TL | 大西洋   | Gervelis and Natanson 2013     |

PL(原文より)及び PCL は、ともに尾鰭前長を指す。TL 及び FL はそれぞれ全長、尾叉長を指す。

#### 【食性・捕食者】

ペルー北部で捕獲されたニタリ38個体を含むオナガザメ類128個体の胃内容物を調べた結果、アメリカオオアカイカが優占しており、本種の食性は選択性が高いと推定されている(González-Pestana et al. 2018)。エクアドル近海で報告されたニタリの胃内容物を分析した報告においても、アカイカ、アメリカオオアカイカ、トビイカ、チリヘイクが優占しており、栄養的地位の幅は狭く、栄養段階は高次捕食者に特徴的な値である5.0と推定されている(Calle-Morán and Galván-Magaña 2020)。

## 資源状態

現在、マグロ類地域漁業管理機関(RMFO)において、オナガザメ類の資源水準の推定はどの大洋でも行われていないが、太平洋、大西洋、インド洋において、はえ縄漁業を対象とした生態学的リスク解析が行われている。太平洋共同体事務局(SPC)が行った太平洋の解析結果によれば、オナガザメ類のリスク(脆弱性)は"中程度"と評価されたが(Kirby and Hobday 2007)、ICCAT が行った大西洋の結果では、ICCAT 海域で主に漁獲または混獲される代表的な板鰓類 20種の中でハチワレは最も脆弱~3番目(評価方法によって異なる)に脆弱な種であると推定されている(ICCAT 2017)。大西洋の解析では、ハチワレの生産力が他の種に比べて低いとされていることが本種の脆弱性が高いと推定された主な要因と考えられる(Cortés et al. 2010)。IOTC が行ったインド洋の結果でも、ハチワレは非常に脆弱な種であることが示唆されている(IOTC 2012)。

北米西海岸で漁獲されるマオナガについては、アメリカ海洋大気局(NOAA)のアメリカ海洋漁業局(NMFS)により、米国及びメキシコの漁業データに基づき、統合モデルを用いた資源評価が行われている(Teo et al. 2018)。2018年に行われた資源評価では、2016年に設定した再生産や自然死亡に関するパラメーターの見直しを行い、生産力が低い設定で資源状態の再評価が行われた(資源評価期間:1969~2014年)。その結果、推定された漁獲圧の強さは、乱獲状態の指標となる値を大きく下回り、2014年時点の親魚量は開発前のレベルの62%と推定されており、MSY 水準に相当する親魚量を大きく上回ることから、本系群は乱獲状態になく過剰漁獲の状態にもないことが示された。本系群は、過去には過剰漁獲により個体数が大きく減少したものの、その後の厳しい漁業管理の導入により、2006年以降緩やかに回復が続いているとされている。

この他、SPC の専門家グループが報告した中西部太平洋水域の漁業データに基づくオナガザメ類の資源状態の傾向分析によれば、はえ縄漁業における主な漁獲は東経 170 度以東、南緯 10 度~北緯 20 度で見られること、漁獲物の多くは未成熟個体であること、漁獲率は 1995~2001 年にかけて増加し、その後 2003~2011 年にかけてわずかに減少傾向を示し、2012~2014 年に急激に減少していることが示されている(Rice et al. 2015)。その後、FAO の ABNJ(Areas Beyond National Jurisdiction)プロジェクトとして、米国と日本が SPC の保有するオブザーバーデータや漁獲統計データを加えた包括的な解析を行い、太平洋全域におけるハチワレの持続可能性に対するリスクを評価し、その結果が 2017 年の WCPFC 第 13 回科

学委員会で発表された。このリスク評価は、放流後の死亡率 (100%、30~70%)を含め、幾つかのパラメーターについて 複数のシナリオを考慮し、「現行の漁獲圧」が「本系群が持続 可能なレベルの漁獲圧」を超える確率 (絶滅リスク)に基づいて実施された。その結果、管理基準値を r (内的自然増加率)の半分 (0.5r) または r の 4 分の 3 (0.75r) とした場合、推定 される絶滅リスクは大きく変動し (Common Oceans (ABNJ) Tuna Project 2017)、現状では本系群のリスク評価における管理基準値の定義も定まっていないことから、WCPFC 科学委員会は本委員会に対して、適切な限界管理基準値の定義やその上限を超過した場合のリスク許容度を検討する必要があると勧告した (WCPFC 2017)。

近年、複数のマグロ類 RFMO でオナガザメ類の資源管理措 置が実施されており、これら保存管理措置の有効性の検討や最 適な放流方法 (best handling practice) の開発を目的とした調 査が行われている。これらの調査は主にはえ縄で漁獲された生 存個体を対象に、電子標識を装着するもので、米国西海岸でハ チワレに対して行われた研究によれば、放流した14個体のう ち 12 個体は放流後 30 日間生存し、1 個体は放流後すぐに死 亡し、残り1個体は放流後6時間後に何者かに捕食されたこ とから、30日間の放流後生残率は86%(捕食された個体も死 亡に含める)~92%(捕食された個体は死亡に含めない)と推 定されている(Sepulveda et al. 2019)。IOTC の生態系混獲作 業部会では、2018年からハチワレを対象とした資源管理措置 (生存放流)の有効性を検証するための標識放流調査が実施さ れており、我が国も本調査に参画している。2020年7月には インド洋においてハチワレ 1 個体の標識放流を行い、放流後 60日間の生存を確認、報告した。

## 管理方策

現在、ICCAT においてハチワレの船上保持禁止措置 (Recommendation 09-07) が、IOTC においてオナガザメ類 3 種の船上保持禁止措置(Resolution 12/09)が実施されている。 この他、全てのマグロ類 RFMO において、漁獲されたサメ類 の完全利用(頭部、内臓及び皮を除く全ての部位を最初の水揚 げまたは転載まで船上で保持すること)及び漁獲データ提出が 義務付けられており、2019年のWCPFCでは、2020年11月 以降、(ア)水揚げまで鰭を胴体から切り離さない、または、 (イ)船上では切り離した鰭と胴体を同じ袋に保管する等の代 替措置を講じる、ことが合意された。加えて、WCPFCでは、 2014年の年次会合において、①マグロ・カジキ類を対象とす るはえ縄漁業は、ワイヤーリーダー(ワイヤー製の枝縄及びは りす) またはシャークライン (浮き玉または浮縄に接続された 枝縄) のいずれかを使用しないこと (ワイヤーリーダーやシャ ークラインの詳細については、用語集を参照のこと)、②サメ 類を対象とするはえ縄漁業は、漁獲を適切な水準に制限するた めの措置等を含む管理計画を策定すること、が合意されている。

2016 年 9~10 月に開催された CITES 第 17 回締約国会議において、ハチワレ (類似種規定により、オナガザメ類 3 種全て)を附属書 II に掲載する提案が行われ、投票の結果、可決された。この決定は 2017 年 10 月 4 日から発効し、オナガザメ類の魚体、鰭等を含む一切の派生物を貿易する際は、輸出国による輸

出許可書の発給が必要となり、公海域で採捕し自国に持ち帰る 行為(海からの持込み)についても証明書の発給が義務付けられる。しかしながら我が国は、商業漁業対象種は持続的利用の 観点、漁業管理主体である地域漁業管理機関または沿岸国が適切に管理していくべきとの立場等から、本種の附属書 II 掲載について留保している。このため、本種を締約国に輸出する場合には輸出許可書が必要となるものの、海からの持込みについての証明書の発給は不要となっている。

# 執筆者

かつお・まぐろユニット さめ・かじきサブユニット 水産資源研究所 水産資源研究センター 広域性資源部 まぐろ第4グループ 仙波 靖子

# 参考文献

- Aalbers, S. A., Wang,M., Villafana, C., and Sepulveda, C. A. 2021. Bigeye thresher shark *Alopias superciliosus* move ments and post-release survivorship following capture o n linked buoy gear. Fish. Res., 236: 105857. Doi: 10.101 6/j.fishres.2020.105857
- Arostegui, M.C., Gaube, P., Berumen, M.L., DiGiulian, A., Jones, B.H., Røstad, A., and Braun, C.D. 2020 Vertical movements of a pelagic thresher shark (*Alopias pelagicus*): insights into the species' physiological limitations and trophic ecology in the Red Sea. Endang. Species Res., 43: 387-394. Doi: 10.3354/esr01079
- Briones-Mendoza, J., Carrasco-Puig, P., and Toala-Franco, D., 2021 Reproductive biology aspects of *Alopias pelagicus* and *A. superciliosus* (Lamniformes: Alopiidae) in the Ecuadorian Pacific. Neotrop. Ichthyol., 19: e210015. Doi: 10.1590/1982-0224-2021-0015
- Cailliet, G.M., and Bedford, D.W. 1983. The biology of three pelagic sharks from California waters, and their emerging fisheries: a review. CALCOFI Rep., XXIV: 57-69 pp.
- Calle-Morán, M., and Galván-Magaña, F. 2020. Diet composition and feeding habits of the pelagic thresher shark *Alopias pelagicus* in Eastern Central Pacific Ocean, Ecuadorian waters. J. Mar. Biol. Assoc. U. K. 100: 837-845. Doi: 10.1017/S0025315420000569
- Cao, D.M., Song, L.M., Zhang, Y., Lv, K.K., and Hu, Z.X. 2011. Environmental preferences of *Alopias superciliosus* and *Alopias vulpinus* in waters near the Marshall Islands. New. Zeal. J. Mar. Fresh., 45: 103-119.
- Cardenosa, D., Hyde, J., and Caballero, S. 2014. Genetic diversity and population structure of the pelagic thresher shark (*Alopias pelagicus*) in the Pacific Ocean: evidence for two evolutionarily significant units. PLOS ONE, 9(10): e110193.
- Cartamil, D., Wegner, N.C., Aalbers, S., Sepulveda, C.A., Baquero, A., and Graham, J.B. 2010a. Diel movement patterns and habitat preferences of the common thresher shark (*Alopias*

- *vulpinus*) in the Southern California Bight. Mar. Freshw. Res., 61: 596-604.
- Cartamil, D., Wegner, N.C., Kacev, D., Ben-aderet, N., Kohin, S., and Graham, J.B. 2010b. Movement pattern and nursery habitat of juvenile thresher sharks *Alopias vulpinus* in the Southern California Bight. Mar. Ecol. Prog. Ser., 404: 249-258.
- Cartamil, D.P., Sepulveda, C.A., Wegner, N.C., Aalbers, S.A., Baquero, A., and Graham, J.B. 2011. Archival tagging of subadult and adult common thresher sharks (*Alopias vulpinus*) off the coast of southern California. Mar. Biol., 158: 935-944.
- Cartamil, D., Wraith, J., Wegner, N.C., Kacev, D., Lam, C.H., Santana-Morales, O., Sosa-Nishizaki, O., Escobedo-Olvera, M., Kohin, S., Graham, J.B., and Hastings, P. 2016. Movements and distribution of juvenile common thresher sharks *Alopias vulpinus* in Pacific coast waters of the USA and Mexico. Mar. Ecol. Prog. Ser., 548: 153-163.
- Chen, C.T., Liu, K.M., and Chang, Y.C. 1997. Reproductive biology of the bigeye thresher shark, *Alopias superciliosus* (Lowe, 1839) (Chondrichthyes: Alopiidae), in the northwestern Pacific. Ichthyol. Res., 44: 228-235.
- Coelho, R., Fernandez-Carvalho, J., and Santos, M.N. 2015. Habitat use and diel vertical migration of bigeye thresher shark: Overlap with pelagic longline fishing gear. Mar. Environ. Res., 112: 91-99.
- Common Oceans (ABNJ) Tuna Project. 2017. Pacific-wide sustainability risk assessment of bigeye thresher shark (*Alopias superciliosus*). WCPFC-SC13-2017/SA-WP-11 (rev 2). https://www.wcpfc.int/doc/sc13-sa-wp-11/bigeye-thresher -shark-assessment (2022 年 1 月 26 日)
- Compagno, L.J.V. 2001. FAO species catalog, Vol. 4: Sharks of the world; Part 2 Bullhead, mackerel and carpet sharks. Food and Agricultural Organization of the United Nations. Rome, Italy. 269 pp.
- Cortés, E., Arocha, F., Beerkircher, L., Carvalho, F., Domingo, A., Heupel, M., Holtzhausen, H., Santos, M.N., Ribera, M., and Simpfendorfer, C. 2010. Ecological risk assessment of pelagic sharks caught in Atlantic pelagic fisheries. Aquat. Living Resour., 23: 25-34.
- Drew, M., White, W.T., Dharmadi, Harry, A.V., and Huveneers, C. 2015. Age, growth and maturity of the pelagic thresher *Alopias pelagicus* and the scalloped hammerhead *Sphyrna lewini*. J. Fish. Biol., 86: 333-354.
- Fernandez-Carvalho, J., Coelho, R., Erzini, K., and Santos, M.N. 2011. Age and growth of the bigeye thresher shark, *Alopias superciliosus*, from the pelagic longline fisheries in the tropical northwestern Atlantic Ocean, determined by vertebral band counts. Aquat. Living Resour., 24: 359-368.
- Fernandez-Carvalho, J., Coelho, R., Erzini, K., and Santos, M.N. 2015a. Modelling age and growth of the bigeye thresher (*Alopias superciliosus*) in the Atlantic Ocean. Fish. Bull., 113: 468-481.

- Fernandez-Carvalho, J., Coelho, R., Mejuto, J., Cortés, E., Domingo, A., Yokawa, K., Liu, K.M., García-Cortés, B., Forselledo, R., Ohshimo, S., Ramos-Cartelle, A., Tsai, W.P., and Santos, M.N. 2015b. Pan-Atlantic distribution and reproductive biology of the bigeye thresher, *Alopias superciliosus*. Rev. Fish. Biol. Fisheries, 25: 551-568.
- Gervelis, B.J., and Natanson, L.J. 2013. Age and growth of the common thresher shark in the western north Atlantic Ocean. Trans. Am. Fish. Soc., 142: 1535-1545.
- Gilmore, R.G. 1983. Observation on the embryos of the longfin mako, *Isurus paucus*, and the bigeye thresher, *Alopias superciliosus*. Copeia, 2: 375-382.
- González-Pestana, A., Acuña-Perales, N., Córdova, F., Coasaca, J., Alfaro, E., Alfaro-Shigueto, J., and Mangel, J.C. 2018. Feeding habits of thresher sharks *Alopias* sp. in northern Peru: predators of Humboldt squid (*Dosidicus gigas*). J. Mar. Biol. Assoc. U. K., 99: 695-702.
- Heard, M., Rogers, P.J., Bruce, B.D., Humphries, N.E., and Huveneers, C. 2018. Plasticity in the diel vertical movement of two pelagic predators (*Prionace glauca* and *Alopias vulpinus*) in the southeastern Indian Ocean. Fish. Oceanogr., 27: 199-211.
- ICCAT. 2017. Report of the standing committee on reseach and statistics (SCRS), Section 8.13, Executive Summary Sharks. https://www.iccat.int/Documents/Meetings/Docs/2017\_SC RS\_REP\_ENG.pdf(2022 年 11 月 15 日)
- IOTC. 2012. Report of the Eighth Session of the IOTC Working Party on Ecosystems and Bycatch, Cape Town, South Africa, 17-19 September, 2012. IOTC-2012-WPEB08. http://www.iotc.org/documents/report-eighth-session-iotc-working-party-ecosystems-and-bycatch (2022 年 11 月 15
- IOTC. 2016a. Bigeye thresher shark Supporting information. http://www.iotc.org/sites/default/files/documents/science/species\_summaries/english/Bigeye%20thresher%20shark% 20Supporting%20Information.pdf (2022 年 11 月 15 日)

日)

- IOTC. 2016b. Pelagic thresher shark Supporting information. http://www.iotc.org/sites/default/files/documents/science/species\_summaries/english/Pelagic%20thresher%20shark%20Supporting%20Information.pdf (2022 年 11 月 15 日)
- Kneebone, J., Bowlby, H., Mello, J.J., McCandless, C.T., Natanson, L.J., Gervelis, B., Skomal, G.B., Kohler, N., and Bernal, D. 2020. Seasonal distribution and habitat use of the common thresher shark (*Alopias vulpinus*) in the western North Atlantic Ocean inferred from fishery-dependent data. Fish. Bull., 118: 399-412. Doi: 10.7755/FB.118.4.8
- Kinney, M.J., Kacev. D., Sippel, T., Dewar, H., and Eguchi, T. 2020. Common thresher shark *Alopias vulpinus* movement: Bayesian Inference on a data limited species. Mar. Ecol. Prog. Ser., 639: 155-167. Doi: 10.3354/meps13271
- Kirby, D.S., and Hobday, A. 2007. Ecological Risk Assessment for species caught in the WCPO tuna fishery: updated

- Productivity-Susceptibility Analysis.. Third Scientific Committee Meeting of the Western and Central Pacific Fisheries Commission, Honolulu, USA, 13-24 August 2007. WCPFC-SC3-EB SWG/WP-1.
- https://meetings.wcpfc.int/node/6137 (2022 年 1 月 26 日)
- Liu, K.M., Chiang, P.J., and Chen, C.T. 1998. Age and growth estimates of the bigeye thresher shark, *Alopias superciliosus*, in northeastern Taiwan waters. Fish. Bull., 96: 482-491.
- Liu, K.M., Chen, C.T., Liao, T.H., and Joung, S.J. 1999. Age, growth and reproduction of the pelagic thresher shark, *Alopias pelagicus* in the northwestern Pacific. Copeia, 1: 68-74
- Mancini, P.L., and Amorim, A.F. 2006. Embryos of common thresher shark *Alopias vulpinus* in southern Brazil, south Atlantic Ocean. J. Fish. Biol., 69: 318-321.
- Matsunaga, H., and Yokawa, K. 2013. Distribution and ecology of bigeye thresher *Alopias superciliosus* in the Pacific Ocean. Fish. Sci., 79: 737-748.
- Morales, M.J.A., Mendonça, F.F., Magalhães, C.O., Oliveira, C., Coelho, R., Santos, M.N., Cruz, V.P., Piercy, A., Burgess, G., Hazin, F.V., and Foresti, F. 2018. Population genetics of the bigeye thresher shark *Alopias superciliosus* in the Atlantic and Indian Oceans: implications for conservation. Rev. Fish. Biol. Fisheries., 28: 941-951.
- Moreno, J.A., and Moron, J. 1992. Reproductive biology of the bigeye thresher shark, *Alopias superciliosus* (Lowe, 1839). Aust. J. Mar. Freshw. Res., 43: 77-86.
- Nakano, H., Matsunaga, H., Okamoto, H., and Okazaki, M. 2003. Acoustic tracking of bigeye thresher shark *Alopias superciliosus* in the eastern Pacific Ocean. Mar. Ecol. Prog. Ser., 265: 255-261.
- Natanson, L.J., and Gervelis, B.J. 2013. The reproductive biology of common thresher shark in the western north Atlantic Ocean. Trans. Am. Fish. Soc., 142: 1546-1562.
- Natanson, L.J., Hamady, L.L., and Gervelis, B.J. 2015. Analysis of bomb radiocarbon data for common thresher sharks, *Alopias vulpinus*, in the northwestern Atlantic Ocean with revised growth curves. Environ. Biol. Fish., 99: 39-47.
- Oliver, S.P., Grothues, T.M., Williams, A.L., Cerna, V., Silvosa, M., Cases, G., Reed, M., and Christopher, S. 2019. Risk and resilience: High stakes for sharks making transjurisdictional movements to use a conservation area. Biol. Conserv., 230: 58-66.
- Otake, T., and Mizue, K. 1981. Direct evidence for oophagy in thresher shark, *Alopias pelagicus*. Jpn. J. Ichthyol., 28: 171-172.
- Rice, J., Tremblay-Boyer, L., Scott, R., Hare, S., and Tidd, A. 2015. Analysis of stock status and related indicators for key shark species of the Western Central Pacific Fisheries Commission. Working Paper EB-WP-04, Eleventh Meeting of the Scientific Committee, WCPFC, 5-13 August 2015, Pohnpei, Federated States of Micronesia.

- https://meetings.wcpfc.int/node/9137 (2022年1月26日)
- Romero-Caicedo, A.F., Galvan-Magana, F., and Martinez-Ortiz, J. 2014. Reproduction of the pelagic thresher shark *Alopias pelagicus* in the equatorial Pacific. J. Mar. Biol. Assoc. U. K., 94: 1501-1507.
- Sepulveda, C.A., Wang, M., and Aalbers, S.A. 2019. Post-release survivorship and movements of bigeye thresher sharks, *Alopias superciliosus*, following capture on deep-set buoy gear. Fish. Res., 219: UNSP 105312.
- Smith, S.E., Rasmussen, R.C., Ramon, D.A., and Cailliet, G.M. 2008. The biology and ecology of thresher sharks (Alopidae). *In*Camhi, M.D., Pikitch, E.K., and Babcock, E.A. (eds.), Sharks of the open ocean. Biology, fisheries and conservation. Blackwell Publishing, Oxford, UK.
- 水産庁(編).1993-1997. 平成4年度-平成8年度 日本周辺クロマグロ調査委託事業報告書. 水産庁, 東京.
- 水産庁(編).1998-2001.平成9年度-平成12年度日本周辺高度回遊性魚類資源対策調査委託事業報告書-II(別冊資料:まぐろ類等漁獲実態調査結果).水産庁,東京.
- 水産総合研究センター(編).2002-2006. 平成13年度-平成17年度日本周辺高度回遊性魚類資源対策調査委託事業報告書. 水産総合研究センター,横浜.
- 水産総合研究センター(編).2007. 平成18年度 日本周辺国際魚類資源調査委託事業報告書.水産総合研究センター,横浜.
- 水産総合研究センター(編).2008-2011. 平成19年度-平成22 年度日本周辺国際魚類資源調査報告書. 水産総合研究セン ター, 横浜.
- 水産総合研究センター(編).2012-2016. 平成23年度-平成27年度 水揚地でのまぐろ・かじき調査結果. 水産総合研究セ

- ンター, 横浜.
- 水産研究・教育機構(編).2017-2018. 平成28 年度-平成29 年度 国際漁業資源評価調査・情報提供事業 現場実態調査 報告書.水産研究・教育機構,横浜.
- 水産研究・教育機構(編).2019-2020. 平成30-31 年度 水揚 げ地でのまぐろ・かじき・さめ調査結果. 水産研究・教育機 構. 横浜.
- 水産研究・教育機構(編).2021-2022. 令和 2-3 年度 水揚げ 地でのまぐろ・かじき・さめ調査結果.水産研究・教育機構, 横浜.
- Teo, S.L.H., Rodriguez, E.G., and Sosa-Nishizaki, O. 2018. Status of common thresher sharks, Alopius vulpinus, along the west coast of North America: updated stock assessment based on alternative life history. NOAA Technical Memorandum NMFS. https://swfsc-publications.fisheries.noaa.gov/publications/TM/SWFSC/NOAA-TM-NMFS-SWFSC-595.pdf(2022 年 11 月 15 日)
- Varghese, S.P., Unnikrishnan, N., Gulati, D.K., and Ayoob, A.E. 2017. Size, sex, and reproductive biology of seven pelagic sharks in the eastern Arabian Sea. J. Mar. Biol. Assoc. U. K., 97: 181-196.
- WCPFC. 2017. Summary Report of the Thirteenth Regular Session of the Scientific Committee.
  - https://meetings.wcpfc.int/node/10387 (2022年1月26日)
- Weng, K.C., and Block, B.A. 2004. Diel vertical migration of the bigeye thresher shark (*Alopias superciliosus*), a species possessing orbital retia mirabilia. Fish. Bull., 102: 221-229.
- White, W.T. 2007. Biological observation on lamnoid sharks (Lamniformes) caught by fisheries in eastern Indonesia. J. Mar. Biol. Ass. U. K., 87: 781-788.

## オナガザメ類(全水域)の資源の現況(要約表)

| 資源水準                   | 調査中                                                               |  |  |
|------------------------|-------------------------------------------------------------------|--|--|
| 資源動向                   | 調査中                                                               |  |  |
| 世界の漁獲量*1<br>(最近 5 年間)  | 8,351~10,394 トン<br>最近(2020)年:8,638 トン<br>平均:9,364 トン(2016~2020 年) |  |  |
| 我が国の漁獲量*2<br>(最近 5 年間) | 39~153トン<br>最近(2021)年:39トン<br>平均:84トン(2017~2021年)                 |  |  |
| 管理目標                   | 検討中                                                               |  |  |
| 資源評価の方法                | リスク評価による検討(太平洋ハチワレ)                                               |  |  |
| 資源の状態                  | 調査中                                                               |  |  |
| 管理措置                   | 船上保持禁止(ICCAT(ハチワレ)、IOTC(全種))<br>漁獲物の完全利用等(ICCAT(ハチワレ以外)、WCPFC)    |  |  |
| 管理機関・関係機関              | FAO、ICCAT、IOTC、WCPFC、CCSBT、CITES                                  |  |  |
| 最近の資源評価年               | 2017年(太平洋ハチワレ)                                                    |  |  |
| 次回の資源評価年               | 2026 年(インド洋ハチワレ・ニタリ)                                              |  |  |

<sup>\*&</sup>lt;sup>1</sup> FAO による統計資料 (2016~2020 年) に基づく集計値。

<sup>\*2</sup> 我が国主要水揚げ港における水揚量(2017~2021年)の集計値。