キハダ インド洋

(Yellowfin Tuna Thunnus albacares)

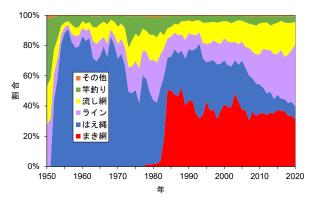
管理・関係機関

インド洋におけるキハダを含むマグロ類の資源管理は、初期 の頃は国際連合食糧農業機構(FAO)傘下の「インド洋漁業委 員会(IOFC; 1967~1999年)」が行っていた。まぐろ漁業が 拡大し漁獲量が増加(1950年5万トンから1980年40万ト ン) したため、1982年に IOFC 内にマグロ類に特化した「イン ド洋・太平洋まぐろ類開発管理プログラム(IPTP)」が設立さ れ、1996年まで続いた。加盟国・地域機関は日本を含む14か 国と欧州連合(EU)で、事務局所在地はスリランカにあった。 IOFC (IPTP) は FAO の地域事業という位置づけで、会議等に おける合意内容に関する法的拘束力はなかった。マグロ類漁業 がさらに拡大し漁獲量が急増(1996年140万トン)したこと と、法的拘束力のある管理措置を実施できる機関が必要という 機運が高まり、現在の「インド洋まぐろ類委員会(IOTC、事務 局:セーシェル)」が1996年に設立され、本格的な資源・漁 業管理が始まった。日本は発足当時から参加しており、発足後 26 年経過した現在(2022年)、加盟国・地域機関(EU)は29 及び協力的非加盟国 1 か国となっている。本稿は、主に IOTC の最新情報に基づいて執筆した。

最近の動き

2021年10月のIOTC 熱帯性まぐろ作業部会で資源評価が実施され、資源状態は前回(2018年)に引き続き乱獲かつ過剰漁獲と推定された。2021年12月のIOTC 科学委員会では、同年に実施された資源評価に基づき、10年後に産卵親魚量(SSB)を最大持続生産量(MSY)レベル以上及び漁獲死亡係数(F)をMSYレベル以下に回復させるためには全体の漁獲量を現状から20%以上削減する必要がある等の勧告を出した。前回資源評価を実施した2018年12月の科学委員会において、2017年の資源状況は以前に比べ過剰漁獲・乱獲状態が悪化しているにも拘らず、過去2年間に採択されたキハダ漁獲量規制(決議16/01及び17/01)が引き続き守られていなことに大きな懸念を示した(IOTC 2018)。そのため、翌年(2019年)6月の年次会合では、より厳しいキハダ管理措置決議(キハダ資源再建のための暫定計画;決議19/01)及び人工集魚装置(FAD)規制決議(19/02)が採択された。2019年10月及び2020年10

月の熱帯性まぐろ作業部会では資源評価の改定を試みたが、引き続き過剰漁獲・乱獲状況が把握できたものの、データ・モデルの不確実性の問題が深刻なため、どの程度悪化しているか結論がでなかった(IOTC 2019、2020)。そのような状況で、2020年11月の年次会合では、キハダ資源状況のさらなる悪化及び規制が完全に遵守されていないことを深刻に受け止め、2021年3月に第4回特別年次会合が開催され管理措置が検討されたが、合意されなかった。2021年6月の年次会合では、小型船及び排他的経済水域(EEZ)内を除外しない、より大きな漁獲量削減率等の新たな管理措置が採択された。過剰漁獲の原因は、2007年より続いたソマリア沖の海賊活動が2011年にほぼなくなり、それに伴い操業が再開し急激に拡大し漁獲量が急増したことによる。2020~2021年は新型コロナウイルス感染拡大の影響により通常の対面式会議ができず、全てWeb会合となった。


利用・用途

刺身、寿司ネタ、缶詰原料等。

漁業の概要

【漁業の特徴】

インド洋のキハダ漁業 (漁法) は、まき網、はえ縄、流し網、 ライン、その他の5種に大別される。各漁法には以下の操業形 態が含まれる。まき網は素群れ(すむれ)操業と流れもの操業 の2種、はえ縄は遠洋(冷凍)・沿岸(生鮮)の2種、ライン は手釣り・ひき縄・沿岸はえ縄の3種、その他の漁業には、途 上国小規模漁業の地びき網、底びき網、定置網等がある。図1 に 5 種漁法組成の年変化を示した(1950~2020年)。西イン ド洋の EU 大型まき網漁業開始は 1983 年に始まったが、それ 以前は遠洋はえ縄(特に日本)が主漁業であった(平均63%)。 その後、主漁業はまき網、はえ縄、流し網、ラインの4種に分 散した。最近5年間(2016~2020年)における漁法別漁獲量 組成(平均)は、まき網34%、ライン33%、流し網19%、は え縄 9%、竿釣り 4%及びその他 1%である。これより、途上 国における小規模漁業(流し網、ライン、竿釣り、その他)は 総漁獲量の5割以上を占めていることがわかる。図2に、国・ 地域別漁獲量組成の変遷を示した。前記のように、まき網開始 (1983 年) 前は日本のはえ縄漁獲量が最大で、それ以降漁獲量の多い国・地域は、スペイン、フランス、セーシェル(まき網)、インドネシア(全漁法)、モルディブ(竿釣り)、イラン(流し網)、スリランカ(流し網、沿岸はえ縄)、台湾(遠洋はえ縄)となっている。また、海域別では、西インド洋(FAO海域 51)と東インド洋(FAO海域 57)における漁獲量の割合は最近 5 年間(2016~2020 年)においてそれぞれ 84%及び16%で西インド洋での漁獲量が圧倒的に多い(図 3、付表 1)。

図 1. インド洋キハダの漁法別漁獲重量組成(1950~2020年)

(注 1) はえ縄は遠洋(冷凍)・沿岸(生鮮)の2種、まき網は素群れ操業と流れもの操業の2種、ラインは手釣り・ひき縄・沿岸はえ縄の3種、その他には、途上国小規模漁業の地びき網、底びき網、定置網等がある。

(注 2) 西インド洋の EU の大型船によるまき網漁業は 1983 年から本格的に始まった。

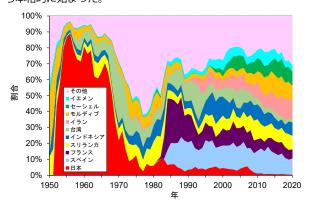


図 2. インド洋キハダの国・地域別漁獲重量組成(1950~2020年) (注) 西インド洋の EU (フランス・スペイン) の大型船によるまき網漁業は 1983 年から本格的に始まった。

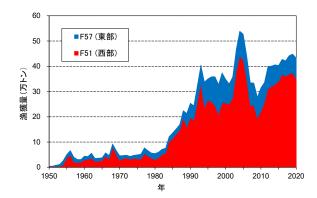
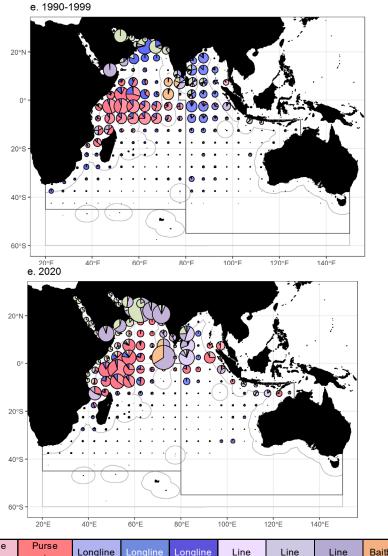


図 3. インド洋キハダの FAO 海域別漁獲量 (1950~2020 年) IOTC データベース (IOTC 2021a) に基づく。F51: 西インド洋 (FAO 漁業統計海域 51) 、F57: 東インド洋 (FAO 漁業統計海域 57) 。

【漁場】

キハダの漁場は 1990 年代まではえ縄、まき網が主流で、それ以降はまき網、流し網、ラインへと変化したため、この前後で漁場の特徴が大きく変わった(図 4)。図 4(上図)はまき網、はえ縄が主漁業であった 1990 年代の漁場図で、図 4(下図)はまき網、ライン、流し網が主流漁業となった最新(2020年)の漁場図である(IOTC 2021b)。図 4(下図)によると現在の主漁場は、セーシェル周辺・ソマリア沖(まき網)、アラビア海(ライン、流し網・沿岸はえ縄)、モザンビーク海峡(まき網・遠洋はえ縄)、スリランカ周辺(ライン、竿釣り、流し網)及びインドネシア沖(全漁法)と、海域により漁法はかなり異なっている。


【総漁獲量】 (図1、5~6及び付表2~3)

インド洋におけるキハダの漁獲は、途上国の伝統的小規模漁業(竿釣り、流し網、ひき縄他)で長年行われてきているが、IOTC の漁獲量統計は 1950 年から公式記録がありそれ以前は不明である。1950 年におけるこれら漁業の総漁獲量は 4,300トンあり、それ以前の漁獲量はそれ以下ではあるが、操業は長年あったと思われる。

西インド洋でフランス及びスペインの大型船によるまき網漁業が本格的に開始前の1982年までは、キハダ総漁獲量は最大9.2万トンでその63%がはえ縄漁業であった。まき網漁業開始後、漁獲量が急増し1988年には20万トンを超えた。それに加え1990年代初めより流し網、ラインの漁獲量が現在まで増加している。1993年にはアラビア海で台湾のはえ縄船による大量漁獲があったため40万トンに達し、その後2002年までは33万~37万トンと比較的高いレベルで推移した。

2003~2006年に、西インド洋熱帯域においてまき網漁業(素群れ操業)、はえ縄漁業及び途上国の小規模漁業による第2回目の大量漁獲があり、その期間の2004~2005年にはさらにアラビア海でも台湾はえ縄による大量漁獲が並行してあった。これにより、キハダの総漁獲量は2003~2006年に40万~50万トン台へと急増し、2004年には54万トン(過去最大漁獲量)を記録した。しかし、その後2007~2011年には漁獲量が28万~34万トンへと急減した。漁獲量急減の主原因は、ソマリア沖の海賊活動(主として2007~2011年)により操業が激減したためである。2012年以降海賊活動がほぼなくなり漁獲量が再度急増し2019年には45万トンとなり、2020年には43万トンとやや減少した。但し、2017年以降、主要漁業に漁獲量規制が導入されたため大幅な増加は見られない。

2003~2006年の西部熱帯インド洋域及びアラビア海におけるキハダ大量漁獲の原因としては、次の4点が考えられ、それらが複合的に絡みあって発生したとみられる(Nishida et al. 2005、西田ほか2006)。(a)強い季節風により湧昇流が強くなり、基礎生産量(クロロフィル量)が急増し、キハダの餌生物(まき網漁業ではシャコ類、はえ縄漁業ではワタリガニ類等)が大量に発生した(図7)。(b)湧昇流によりその海域の水温躍層が浅くなり、キハダが浅い水深に集中しまき網に高漁獲をもたらした。(c)好漁の情報を入手したはえ縄、まき網船が集中した。(d)卓越年級群による加入量が増加したが、卓越年級群の影響は少ないという報告もある(藍ほか2007)。

Purse Purse コード Longline Longline Baitboat Gillnet Other seine seine seine Deep-Coastal Other FS LS Other Trolling Handline freezing longline まき網 はえ縄 はえ縄 渔法 はえ縄 主き網 主き網 はえ縄 电縄 手釣り 竿約り 流し網 その他 (流れもの) (冷凍) (その他) (素群れ) (その他) (沿岸)

図4. インド洋キハダ漁場の変化(上図:1990 年代平年漁場図、下図:2020 年の漁場図) (IOTC 2021b) 5 度区画毎の漁獲量漁法組成色別円グラフによる表示。上図はまき網、はえ縄が主漁業であった1990 年代、下図はまき網、ライン、流し網が主流漁業となった最新(2020 年)の漁場図。その他には、途上国小規模漁業の地びき網、底びき網、定置網などがある。

【はえ縄漁獲量】 (図 5~6 及び付表 2~3)

凡例

はえ縄漁業の漁獲量は 1952 年(3,700 トン)から徐々に増加し、1993 年にはアラビア海における台湾船による第 1 回大量漁獲があり 20 万トンを記録した。その後、2004~2006 年の第 2 回大量漁獲(13 万~17 万トン)を除き漁獲量は海賊の影響もあり徐々に減少し、2020 年には 3.6 万トンとなった。尚、2000 年代半ばまでは遠洋はえ縄(冷凍)による漁獲が 50%以上であったが、その後沿岸はえ縄(生鮮)が逆転し増加しており最近は 70%以上となっている。1952 年から 1968 年までは、日本のはえ縄漁業によるキハダの漁獲はインド洋全体の過半数を占めていた。その後日本のはえ縄操業船隻数が年々減少する一方で、台湾のはえ縄、まき網、流し網、ラインの漁獲量が急増し、最近 5 年間(2016~2020 年)における日本のキハダの漁獲量(はえ縄、まき網合計)は、総漁獲量のわずか 0.7%(3,100 トン)にまで落ち込んだ。

【まき網漁獲量】 (図 5~6 及び付表 2~3)

1983 年に西インド洋で EU の本格的大型まき網漁業が開始し 1.4 万トンの漁獲があり操業船隻数が急増し、6 年後の 1988年には 12 万トンに達した。その後、大量漁獲のあった 2003~2006年(16 万~23 万トン)を除き、9 万~16 万トンで推移しており 2020 年は 14 万トンであった。

インド洋における日本のまき網漁業は、1977年から 1982年まで 1~2 隻が東インド洋で操業し平均 104 トンを漁獲した。1983年以降は漁場が西インド洋へ移り、漁船数も増加し最大時には 11隻(1991~1994年)となり、キハダの漁獲量は 1.2万トン(1992年)と最大となった。その後、再度東インド洋へ移り漁船数・漁獲量は急減し、最近年は数隻の操業(調査船1隻を含む)で 2019年は 24トン、2020年は 58トンと激減した。2019年は強い正のインド洋ダイポールモード現象(後述)が発生し、カツオ漁況が悪化し操業が短期間となりまき網

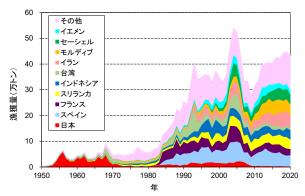


図 5. インド洋キハダの国・地域別漁獲量(1950~2020 年) IOTC データベース(IOTC 2021a)に基づく。

(注) 西インド洋の EU (フランス・スペイン) の大型船による まき網漁業は 1983 年から本格的に始まった。

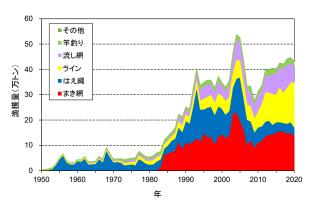


図 6. インド洋キハダの漁法別漁獲量 (1950~2020 年) IOTC データベース (IOTC 2021a) に基づく。

(注 1) はえ縄は遠洋(冷凍)・沿岸(生鮮)の2種、まき網は素群れ操業と流れもの操業の2種、ラインは手釣り・ひき縄・沿岸はえ縄の3種、その他には、途上国小規模漁業の地びき網、底びき網、定置網等がある。(注 2) 西インド洋のEUの大型船によるまき網漁業は1983年から本格的に始まった。

船が太平洋へ移動したため、キハダの漁獲量も激減した (Matsumoto *et al.* 2020)。

まき網操業には素群れ操業と流れもの操業があり、流れもの操業には、流木等に付く自然集魚及び人工集魚装置(FAD)による操業の2種がある。西インド洋では、2008年まで素群れ操業による漁獲が50%以上、それ以後は流れもの操業(主にFAD)が逆転し増加しており、最近は70%以上となっている。流れもの操業では、カツオやメバチ若齢魚と群れをなす50~60 cm(1 歳魚)をモードとする若齢魚を、素群れ操業では、それに加え120~130 cm(4 歳魚)をモードとする大型魚を漁獲している(IOTC 2017)。

【流し網・ライン(ひき縄・手釣・沿岸はえ縄)・竿釣り漁獲量】 (図 5~6 及び付表 2~3)

これらの3種漁業は前記のようにIOTC漁獲統計開始年1950年以前から、途上国の小規模漁業として長年行われてきている。特にモルディブの竿釣りは400年以上前から行われているという記録もある。流し網における1950年の漁獲量は1,100トンでそれ以降現在まで増加しており、2017年に9.5万トンの

Stomatopod natosquilla

Charybdis smithii

図7. 西部熱帯インド洋においてキハダ大量漁獲があった2003~2006年に大量発生した2種の餌生物

左:シャコと、右:ワタリガニで、それぞれまき網・はえ縄で漁獲されたキハダの胃内容物に多く見られた。

最大漁獲量を記録したが、2020 年は 6.5 万トンへ減少した。 最近年は、イラン、オマーン、パキスタンの順で漁獲量が多い。 ラインは 1970 年までの漁獲の大半がひき縄で、1950 年の漁 獲量は 1,200 トンで、主な漁業国はインドネシア、インド、ス リランカであった。2018 年以降、手釣りの漁獲が急増しライ ンの 8 割を占めており、オマーン、モルディブ、イエメンが主 な漁業国である。2020 年におけるラインの漁獲量は 18 万ト ンであった。竿釣りは、1950 年 1,900 トンで 2013 年まで増 加(2.4 万トン)、その後減少し 2020 年は 1.7 万トンであっ た。全期間でモルディブの漁獲が 8 割以上で主漁業国である。 2020 年 3 種漁業の総漁獲量は 26 万トンで、総漁獲量の 60% と最も高い。

【インド洋ダイポール現象が漁海況に与える影響】

インド洋熱帯域で南東貿易風が強まると、東部で海水温が低くなり西部で海水温が高くなる大気海洋現象が発生する。Saji et al. (1999) が本現象を発見し、「インド洋ダイポールモード現象(ダイポール現象)」と命名した。この場合を正のダイポール現象とし、逆の場合を負のダイポール現象としている。ダイポール現象の強度は、東西インド洋の特定海域(各 1 か所)の表面海水温度差である「ダイポールモード指数(DMI)」で示される。DMI が+0.4℃以上の場合「正のダイポール現象」、-0.4℃以下の場合「負のダイポール現象」で、その間をダイポール現象のない「中間状態(neutral)」としている。過去73年間(1949~2021年)に正負のダイポール現象は各 15・16 回発生した。

正のダイポール現象時(図8左)、南東貿易風が強まり東側の高温水は西側へ移動し、それを補うように深海から湧昇流及び海面から蒸発が盛んになるために、東インド洋では海水温が低下する。それに応じカツオは中西部の暖水域に移動するため、東インド洋のまき網漁況は悪化する。キハダの場合には、キハダの好生息域である水温躍層深度が浅くなり、さらに湧昇流によりクロロフィルを含む栄養塩が増え、中西部インド洋からキハダが逆に東部へ移動するため、東インド洋における漁況は良くなる。はえ縄キハダ・メバチの場合、縄(鈎)設置深度で漁況が左右されるため、浅く設置した場合漁況は良くなる。一方、中西部インド洋では、東部から暖水が広がるためまき網のカツオ漁況は良くなる。キハダの場合、水温躍層深度が深くなりまき網の深度ではカバー(漁獲)できなくなるため不漁となる。はえ縄のキハダ・メバチの場合には、上記のように縄(鈎)設

		正のダイポ-	ール現象	負のダイポール現象				
2	発生年(1960年以降) (正負各12回)	1961, 1963, 1972, 1982, 1 2007, 2012, 20		1960, 1964, 1974, 1981, 1989, 1992, 1996, 1998, 2010, 2014, 2016及び2020				
	季節風	強い南	東風	強いは	強い北西風			
表面水温が大気循環に 与える影響		essan es	Non	Equity 1	AUBLICALS			
海水	温と水温躍層深度の変動	150 m	Temperatures below the sea surface	are ore	Temperatures below the sea surface			
	海域	西部	東部	西部	東部			
	表層水温	高い	低い	低い	高い			
海況	栄養塩(クロロフィル量他)	少ない	多い	多い	少ない			
	水温躍層深度	深い	浅い	浅い	深い			
	カツオ(まき網)	良い	悪い	悪い	良い			
漁況	キハダ(まき網)	悪い	良い	良い	悪い			
	キハダ・メバチ(はえ縄)	影響少ない	比較的よい	比較的よい	影響少ない			

図 8. 正負のダイポール現象が東西インド洋の漁海況に与える影響(Marsac and Nishida 2007)

定深度に左右されるが、水温躍層深度が深くなる場合には、通常この水深帯に縄(鈎)が多く設定されているため、漁況はあまり変化しない。負の場合は北西貿易風により、これと全く逆の現象が発生する(図8右)。

以上よりダイポール現象は、漁具の深さを調整できるはえ縄 漁業 (キハダ・メバチ) には影響が少ないが、まき網漁業の場 合にはその影響が顕著である。

この他、太平洋のエルニーニョ現象がインド洋にも影響を与えており、ダイポール現象とも関わるため両方発生した場合、海況は複雑になり漁況も説明が困難となる。実際、過去 130 年間にダイポール現象とエルニーニョ現象が同時に出現、または一方のみが独立して出現した事例もあり、両者は不規則に発生しているため、その因果関係は未詳であるとしている(Marsac and Nishida 2007)。最近の研究では、エルニーニョ・ラニーニャ現象は、20 か月前に発生したインド洋ダイポールモード現象(負・正)にそれぞれ関係していることが示唆されている(Izumo et al. 2010)。その意味で、図 8 はダイポール現象に特化した(pure dipole と呼称)漁海況の模式図のため注意が必要である。

生物学的特性

【分布】

インド洋のキハダは熱帯及び亜熱帯域に広範に分布するが、はえ縄漁獲データによると、西インド洋において南緯 40 度付近にまで分布していることが示されている(図 4)。キハダは通常は大きな魚群を形成しており、30~50 cm の若齢魚はカ

ツオや若齢のメバチとの混合群を形成し、熱帯域の表層に分布が限られているのに対し、90 cm 以上の個体はより広い海域の表層から水温躍層付近にまで分布する。50~80 cm の個体は公海域におけるまき網やはえ縄船で漁獲されることは稀であり、その生態は明らかになっていない。しかし、この体長幅(50~80 cm)の個体がアラビア海の小規模漁業で多く漁獲されることが知られていることから(Ariz et al. 2002)、アラビア海が中型個体の素餌域ではないかと推測され、標識放流やオマーン等での体長情報により本種の回遊経路が解明されつつある。

成魚キハダの分布深度に関し直接的な観察例により、水温躍層付近に多く分布していることが報告されている(海洋水産資源開発センター 1985~1988、Mohri and Nishida 2002、Xu *et al.* 2006)。キハダの鉛直分布限界の溶存酸素濃度は 2.0 ml/Lと報告されている(Romena and Nishida 2001、Marsac 2002)。

【系群構造】

インド洋における本種の系群構造は、今までに 5 種情報を用い地域間の統計的検定により判断している。5 種情報とは、形態学、漁業、標識再捕、遺伝子、及び耳石化学物質の各データである。表 1 に、インド洋全体に関する報告結果をまとめた。最も信頼性の高い遺伝子情報及び耳石化学成分及び標識再捕データに基づく結果は北西部、南西部、及び東部の 3 系群を示唆している。形態学及び漁業情報に基づく結果は、東西 2 系群を示唆しているが、南北での解析がされていなため、前者の 3 系群の可能性が高い。

Z II T I T I T I I I I I I I I I I I I I								
使用した情報	論文著者	結果						
形態学	Kurogane and Hiyama 1958	2系群(中西部、東部)						
ж	Morita and Koto 1971	2系群(東西)						
漁業	Nishida 1992	2系群(東西)						
標識再捕	Yano 1990	2系群(中西部、東部)						
遺伝子	Grewe 2020	3系群(南北、東部)						
耳石化学成分	Artetxe-Arrate et al. 2020	3系群(北西、南西、中東部)						

表 1. インド洋全域における系群構造研究結果一覧

【産卵】

キハダの産卵は表面水温 24℃以上の海域で行われる。赤道域(赤道~南緯 10 度)では 12~3 月に、主に東経 75 度以西の海域で行われるため、当歳魚はまき網(流れもの操業)で 7 月に漁獲され始める。その他の産卵場は、スリランカ周辺、モザンビーク海峡、東インド洋(豪州沖)である。50%成熟体長は 100 cm(3~5 歳)と推定されている。キハダでは大型の個体で雄の比率が高くなることが知られているが、インド洋では 140 cm 以上でその傾向が認められる(IOTC 2017)。

【食性、捕食者】

食性に関し、本種の胃中には魚類や甲殻類、頭足類等幅広い 生物が見られ、それほど選択性はないようである。1990年代 後半を境にまき網で漁獲されるキハダ等表層マグロ類・小型浮 魚類の食性が魚類からシャコの一種の Natosquilla investigatoris(図7左)へと大きく変化した(Potier et al. 2007)。 これは、西部熱帯インド洋海域で2003~2006年にキハダ大量 漁獲があった時に大量に発生し、まき網で漁獲されたキハダの 胃中に多く発見された。一方、はえ縄漁業で漁獲されるマグロ 類の成魚の胃中にも同様の傾向が見られるが、その程度は低い。 はえ縄漁業で漁獲されたキハダの胃内容物には、ワタリガニの 一種である Charybdis edwardsi (図7右) がむしろ多くみられ た (Nishida et al. 2005、西田ほか 2006)。 日本のはえ縄漁師 の話では、大量漁獲があった時には、ワタリガニが大量発生し 漁具、漁船にまで付着したほどであったという。同じ漁場でも、 まき網、はえ縄漁業で漁獲されるキハダの餌生物の種類は異な っており、それぞれの餌生物の遊泳深度が異なるためと考えら れる。まき網漁業では、素群れと FAD 等の流れもの操業で漁 獲されたキハダの胃内容物は異なり、後者は空胃の状態が多い。 これはキハダが FAD を離れてから索餌行動をし、FAD 周りで は索餌しないためと見られる。

仔稚魚期には、魚類に限らず多くの捕食者がいるものと思われるが、あまり情報は得られていない。遊泳力が付いた後も、マグロ類を含む魚食性の大型浮魚類による被食があるが、50cm以上に成長すれば、外敵は大型のカジキ類、サメ類、歯鯨類等に限られるものと思われる。

【成長・寿命】

成長に関し、第10回熱帯まぐろ作業部会(2008年)で、標識再捕データをもとに成長率が3回変化する3 stanza 成長曲線が提案された(Fonteneau 2008)(図9)。この成長曲線はモデルを使用せず、再捕までの日数とその間の成長幅(cm)を基にしたアドホックなものである。同作業部会の資源評価に

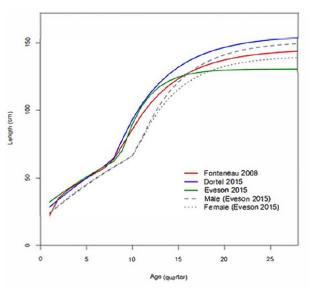
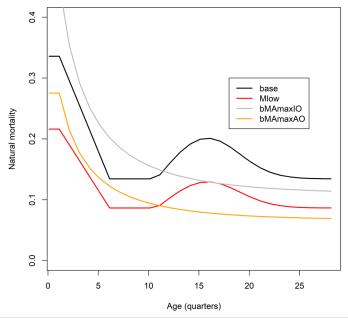


図 9.2021 年のキハダ資源評価 (SS3) で使用された成長曲線 (Fu et al. 2021 改変)

このうち Fonteneau (2008) 及び Dortel et al. (2015) を使用。

使用されて以来、最新の資源評価(2021 年)まで、本成長曲線が使用されてきている。2021 年の資源評価では、耳石、標識データ、サイズデータに基づく Dortel *et al.*(2015)の成長式も合わせて用いられた。


インド洋における本種の寿命は正確にはわかっていないが、 年齢査定の結果や成長が早いことから、メバチより短い 9 歳 前後と考えられている(IOTC 2017)。

【体重-体長関係】

最新(2021 年)の統合資源評価モデル(Stock Synthesis 3:SS3)で、W= 2.459×10^{-5} L²⁹⁶⁷(Chassot *et al.* 2016)が使用された(W は全重量(kg)、L は体長(尾叉長;cm))。最大のキハダは尾叉長 2.0~m・全重量 160~kg という報告がある。

【自然死亡係数(M)】

インド洋における本種成魚 (2歳以上)の自然死亡係数 (M)に関し、西田 (1991) は Heincke (1913)の方法により 0.725 /年と推定した。四半期年齢別の M について、2021 年の資源評価 (SS3)では、IOTC 標識データに基づく M と大西洋まぐろ類保存国際委員会 (ICCAT)で推定された M の 2 通りをベースケースと使用した。また、Hoyle (2021) は最大年齢に基づく推定を行い (Lorenzen 1996 による体長別の値)、これを感度解析に使用した (Fu et al. 2021) (図 10)。

凡例	ベースケース		感度解析		
線種	黒実線	黒実線		オレンジ実線	
Code	base	Mlow	bMAmaxIO	bMAmaxAO	
定義	IOTC標識データに基づくMと WCPFCで推定されたMの中間値	ICCAT推定值	最大年齢(インド洋 のもの)から推定	最大年齢(大西洋のも の)から推定	

図 10.2021 年の資源評価 (SS3) で使用された四半期年齢別自然死亡率 (M) (Fu et al. 2021)

資源状態

2021 年の第 23 回熱帯まぐろ作業部会では、SS3 (Fu et al. 2021) 及び統計的体長別漁獲量尾数モデル(Statistical-Catch-At-Size: SCAS) (Nishida and Kitakado 2021) を用いて資源評 価が行われ、SS3 の結果が管理勧告に用いられた。SS3 では、 空間構造は4海域、時間単位は四半期、漁業(fleet)は21種 類(はえ縄漁業生鮮・冷凍、まき網漁業流れもの操業・素群れ 操業、及びその他の沿岸漁業 5 種をそれぞれ海域別に細分化) として資源評価が行われた。資源量指数として、日台韓のはえ 縄漁業複合標準化単位努力量当たりの漁獲量 (CPUE) 及び EU まき網素群れ標準化 CPUE (四半期・海域別) が使用された (図 11)。また、はえ縄選択曲線をフラットトップ型、その他の漁 業は主にドーム型、自然死亡係数は前記 M、標識混合期間(標 識魚が非標識魚と混合する期間)を4四半期とした。さらに、 エリア分け、スティープネス、最近年の CPUE の扱い(海賊の 影響による一部期間をダウンウエイトもしくは削除)、標識デ ータ重みづけ、成長式のパラメーターの組み合わせによる 96 通りのグリッド (シナリオ) による資源評価を行った。 その結 果、SSB は増減を伴う減少傾向で、最近年もやや減少している。 MSY は 35 万トン (80%信頼区間: 29 万~41 万トン、前回 40 万トン)、MSY を実現する漁獲死亡係数(F)に対する現状の 漁獲死亡係数の比率 F₂₀₂₀ / F_{MSY} は 1.32 (0.68~1.95、前回は 1.20)、MSY を実現する SSB に対する現状の SSB の比率 SSB2020 / SSB_{MSY}は 0.87 (0.63~1.10、前回は 0.83) と推定された。こ れより F 及び SSB ともに前回と類似といえる。

現状の資源状態 (2020 年) は乱獲及び過剰漁獲にある (図 12)。現状 (2020 年) の漁獲量を継続すると、10 年後に SSB <SSB_{MSY}(乱獲状態)、F>F_{MSY}(過剰漁獲)になる確率はそれぞれに93%及び84%で、現状から20%漁獲を削減した場合、SSB<SSB_{MSY}、F>F_{MSY}になる確率はともに50%に近づくと予測された(表2)。資源水準はSSB₂₀₂₀/SSB_{MSY}が1未満であることから低位とし、資源動向はほぼ全期間にわたる産卵親魚量の推移を基に減少と判断した。

管理方策

ソマリア沖の海賊活動期間 (主として 2007~2011年) に北 西インド洋における操業が激減したため、キハダ資源状況が回 復(神戸プロットのグリーンゾーン)した。海賊活動がほぼ終 了後2011年後半より操業が再開し急激に拡大しため、キハダ 資源状況が急激に悪化し翌年(2012年)には即時レッドゾー ンとなった(IOTC 2015)。そのため、2016年の年次会合でキ ハダ資源回復措置(決議16/01)を採択した。しかし、資源状 況は悪化し続け完全に遵守されていないこともあり、その効果 が表れないため決議をほぼ毎年改定・強化してきている (17/01、18/01、19/01 及び 21/01)。最新の決議 21/01 の内 容は BOX 1 の通りである。決議 19/01 を 2020 年の年次会合 までに見直す予定であったが、新型コロナウイルス感染拡大の 影響による web 代替会議では議論できなかった。そのため、 2020年11月の第24回年次会合で、本決議見直しも含め2021 年 3 月に第 4 回特別年次会合を開催することとし、その会合 で管理措置が検討されたが、合意に至らなかった。その後、 2021年6月の年次会合では、小型船及びEEZ内を除外しない、 より大きな漁獲量削減率等を含んだ、新たな管理措置 21/01 が 採択された。日本は、2014年の漁獲量が5,000トン以下で2017 ~2019年の平均漁獲量が 2,000~5,000 トンに該当し(BOX 1)、

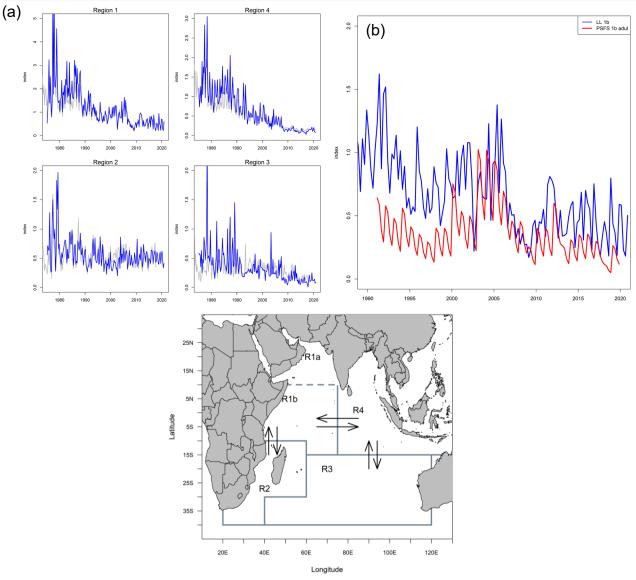


図 11.2021 年の資源評価 (SS3) に使用された標準化 CPUE (上図) 及び CPUE 用の海域区分 (下図)

(a) 海域別四半期別標準化 CPUE (日台韓はえ縄複合) (青線、1972~2020 年。灰色の線は 2018 年の資源評価に使用された標準化 CPUE。海域は、北西 (Region 1) 、南西 (2) 、南東 (3) 、北東 (4) の 4 海域。) (b) EU まき網素群れ標準化 CPUE (北西海域、赤線。青線は同じ海域のはえ縄複合 CPUE)

表 2.F と SSB に関するリスク解析結果(Kobe II マトリックス)

2020 年の漁獲量を増減させた場合、3 年後(2023 年)及び10 年後(2030 年)において F 及びSSB が各 MSY レベルを維持できなくなる確率。(注)行はSSB・F 各 3 年後(2023 年)・10 年後(2030 年)、列は現状(2020 年:2021 年資源評価時)漁獲量からの増減率を示す。カッコ内は増減させた漁獲量(トン)。SS3 の結果に基づく。

	60%	70%	80%	90%	100%	110%	120%
	(259,574)	(302,837)	(346,099)	(389,362)	(432,624)	(475,886)	(519,149)
SSB ₂₀₂₃ < SSB _{MSY}	0.45	0.56	0.68	0.74	0.76	0.82	0.88
$F_{2023} > F_{MSY}$	0.13	0.30	0.53	0.63	0.72	0.82	0.91
$SSB_{2030} < SSB_{MSY}$	0.10	0.33	0.54	0.76	0.93	0.99	1.00
$F_{2030} > F_{MSY}$	0.07	0.31	0.49	0.69	0.84	0.97	0.99

2017~2019年の間の最大漁獲量の4,003トンを超えないようにすることとされる。ただし、いくつか異議申し立てをしている国(インド、インドネシア、イラン、マダガスカル、オマーン、ソマリアの6か国)があり、それらの国については従来の措置(18/01もしくは19/01)が適用される。

2019年の年次会合では、決議 19/01 のほかキハダ資源保全

に関係するまき網・FAD 管理決議 19/02 も採択された(BOX 1)。2021 年の第 25 回年次会合では、より厳しい FAD 管理措置がケニアを含む沿岸島嶼国 9 か国から提案されたがコンセンサスが得られず投票となった。しかし投票プロセスに問題があったため、11 月に再度投票を行うための会合が開催されたが紛糾し、再投票はできず 2022 年の第 26 回年次会合に持ち

BOX 1 キハダ資源回復措置に関する決議(2件)

(1) 決議(21/01) キハダ資源回復措置

- IOTC管理海域のすべてのエリア及び漁船に適用。
- 2014年の漁獲量が5,000トン以上であった加盟国は、今後漁獲量は2014年レベルから21%削減する。ただし、 沿岸途上国は12%、小規模島嶼途上国は10%の削減とする。なお、小規模島嶼途上国及び途上国は基準年 を2014年、2015年、2017~2019年の平均の中から選択できる。また、遠洋漁業国で2017~2019年の平均漁獲 量が10,000トン未満であった場合は2014年レベルから13%削減する。
- 2014年の漁獲量が5,000トン以下でただし2017~2019年の平均漁獲量が5,000トン以上であった加盟国は、今後漁獲量は2014年レベルから21%削減する。ただし、沿岸途上国は2017~2019年の平均から12%、小規模島嶼途上国は2017~2019年の平均もしくは2018年の多い方から10%の削減とする。
- 2014年の漁獲量が5,000トン以下で2017~2019年の平均漁獲量が2,000~5,000トンであった加盟国は、2017~2019年の間の最大漁獲量を超えないようにする。
- 2014年の漁獲量が5,000トン以下で2017~2019年の平均漁獲量が2,000トン未満であった加盟国は、漁獲量が2,000トンを超えないようにする。
- 漁獲量制限に該当しない加盟国の漁業で、2017年以降に基準漁獲量を超えた場合は前記漁獲規制を受ける。
- 漁獲量上限の超過分はそれに続く2年間の漁獲量から差し引く(2年連続で超過した場合は1.25倍)。
- 支援船の数は段階的に削減(2022~2024年にはまき網船10隻以上に支援船3隻、新たな支援船の登録は禁止)、まき網船1隻を補助する支援船は1隻を超えない。
- 流し網を極力他の漁法にすること、及び2023年までに水面下2 mに漁具を設置するようにする。

(2) 決議(19/02) FAD管理規定

- FAD使用数は1隻一度に300基、ブイ取得は年間500基まで。
- まき網船及び支援船のみがFADを投入可能。
- FADに関するデータ(船により追跡、ロスト、譲渡)を1度区画月別に提出。
- FADマーキングについてFADワーキンググループ会合で開発し2020年次会合で検討(注:COVID-19の影響で未完)。
- 絡まりがなく生分解性FAD使用の推奨。
- 2020年1月から1日毎FAD情報(日付、ブイID、船の位置等)を事務局に報告する。

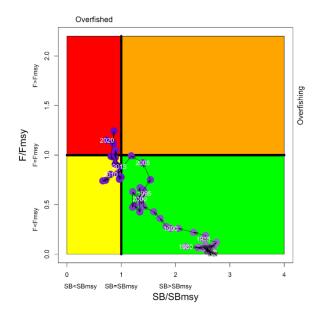


図 12.2021 年の資源評価 (SS3) 結果を示した神戸プロット (1950~2020 年) (IOTC 2021c)

越されることになった。

2021 年 12 月の第 24 回科学委員会は、10 月の第 23 回熱帯 まぐろ作業部会が実施した資源評価に基づき、10 年後に SSB を MSY レベル以上及び F を MSY レベル以下に回復させるためには全体の漁獲量を現状から 20%以上削減する必要がある 等の勧告をした(IOTC 2021c)。

その他、各魚種共通の管理措置(決議)として、漁船数制限 (決議 03/01)、義務提出データ(決議 15/01:ログブックに よる漁獲量・漁獲努力量報告、及び決議 15/02:漁獲量報告)、 オブザーバープログラム(決議 11/04)等がある。

執筆者

水産資源研究所 水産資源研究センター 広域性資源部 まぐろ第3グループ 松本 隆之

水産資源研究所 水産資源研究センター 研究企画部 西田 勤

参考文献

- Ariz, J., Pallares, P., Delgado, A., Fonteneau, A., and Santana, J.C. 2002. Analysis of the catches by weight category of yellowfin tuna (*Thunnus albacares*) undertaken by the purse seine fleets in the Indian Ocean from 1991 to 2000. IOTC-WPTT-02-25. 13 pp.
- Artetxe-Arrate, I., and 27 co-authors. 2020. Otolith δ ¹⁸O as a tracer of yellowfin tuna (*Thunnus albacares*) nursery origin in the Indian Ocean. Working paper IOTC-2020-WPTT22(AS)-06_Rev1. 14 pp.
- Chassot, E., Assan, C., Esparon, J., Tirant, A., Delgado d Molina, A., Dewals, P., Augustin, E., and Bodin, N. 2016. Lengthweight relationships for tropical tunas caught with purse seine in the Indian Ocean: Update and lessons learned. IOTC-2016-WPDCS12-INF05. 11 pp.
- Dortel, E., Sardenne, F., Bousquet, N., Rivot, E., Million, J., Le Croizier, G., and Chassot, E. 2015. An integrated Bayesian modeling approach for the growth of Indian Ocean yellowfin tuna: Fish. Res., 163: 69-84. Doi: 10.1016/j.fishres.2014.07.006.
- Fonteneau, A. 2008. A working proposal for a Yellowfin growth curve to be used during the 2008 yellowfin stock assessment. IOTC-2008-WPTT-4. 8 pp.
- Fu, D., Urtizberea, A., Cardinale, M., Methot, R., Hoyle, S., and Merino, G. 2021. Preliminary Indian Ocean Yellowfin Tuna Stock Assessment 1950-2020 (Stock Synthesis). IOTC–2021–WPTT23–12. 98 pp.
- Grewe, P., and 26 co-authors. 2020. Genetic population connectivity of yellowfin tuna in the Indian Ocean from the PSTBS-IO Project. IOTC-2020-WPTT22(AS)-12_Rev1. 18 pp.
- Heincke, F. 1913. Investigation on the plaice, General report. 1. The plaice fishery and protective regulations. Part I. Rapp.P.-V.Reun. CIEM, 17A. 153 pp.
- Hoyle, S. 2021. Approaches for estimating natural mortality in tuna stock assessments: application to Indian Ocean yellowfin tuna. IOTC-2021-WPTT23-08_Rev1. 23 pp.
- IOTC. 2015. Report of the 18th Session of the IOTC Scientific Committee. IOTC–2015–SC18–R[E]: 175 pp.
- IOTC. 2017. Yellowfin tuna supporting information. 18 pp.
- IOTC. 2018. Report of the 21st Session of the IOTC Scientific Committee. IOTC–2018–SC21–R[E]: 249 pp.
- IOTC. 2019. Report of the 21st Session of the IOTC Working Party on Tropical Tunas. IOTC–2019–WPTT21–R[E]: 142 pp.
- IOTC. 2020. Report of the 22nd Session of the IOTC Working Party on Tropical Tunas, Stock Assessment Meeting. IOTC–2020–WPTT22(AS)–R[E]:106 pp.
- IOTC. 2021a. Nominal catch database.
- http://www.iotc.org/documents/nominal-catch-species-and-gear-vessel-flag-reporting-country(2021年11月1日)
- IOTC. 2021b. Review of yellowfin tuna statistical data. IOTC-2021-WPTT23(AS)-03:45 pp.
- IOTC. 2021c. Report of the 24th Session of the IOTC Scientific

- Committee, 227 pp.
- https://www.iotc.org/sites/default/files/documents/2022/0 2/IOTC-2021-SC24-RE.pdf(2022年2月22日)
- Izumo, T., Vialard, J., Lengaigne, M., Montegut, C., Behera, S., Luo, J.-J., Cravatte, S., Masson, S., and Yamagata, T. 2010. Influence of the state of the Indian Ocean Dipole on the following year's El Niño. Nature Geoscience, 3: 168-172.
- 海洋水産資源開発センター. 1985-1988. まぐろはえなわ新漁場企業化(開発)調査報告書(6分冊).
- Kurogane, K., and Hiyama, Y. 1958. Morphometric comparison of the yellowfin tuna from six grounds in the Indian Ocean. B. Japan. Soc. Sci. Fish., 24(6) & (7): 478-494.
- 藍 (Lan) 國璋・西田 勤・李 明安・張 水楷・毛利雅彦・張 懿 2007. アラビア海のまぐろはえ縄漁業におけるキハダの漁 況と海況との関係. 2007 年度水産海洋学会要旨集. 3 p.
- Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystem and aquaculture. J. Fish Biol., 42: 627-647.
- Marsac, F. 2002. Changes in depth of yellowfin tuna habitat in the Indian Ocean: An historical perspective 1955-2001. IOTC-WPTT-02-33.8 pp.
- http://www.iotc.org/files/proceedings/2002/wptt/IOTC-200 2-WPTT-33.pdf(2017年10月31日)
- Marsac, F., and Nishida, T. 2007. Compared responses of purse seine and longline tuna fisheries to climatic anomalies in the Indian Ocean, 1980-2005. 1st CLIOTOP Symposium, La Paz, Mexico, 3-7 December 2007.
- Matsumoto, T., Inoue, Y., Nishida, T., Semba, Y., and Fisheries Agency, Government of Japan (FAJ). 2020. Japan National Report to the Scientific Committee of the Indian Ocean Tuna Commission, 2020. 27 pp.
- Mohri, M., and Nishida, T. 2002. Consideration on horizontal and vertical distribution of adult yellowfin tuna in the Indian Ocean based on the Japanese tuna longline fisheries. La Mer, 40: 29-39.
- Morita, Y., and Koto, T. 1971. Some consideration on the population structure of yellowfin tuna in the Indian Ocean based on the longline fishery data. Bull. Far Seas Fish. Res. Lab., 4: 125-140.
- 西田 勤. 1991. インド洋のキハダ資源に関する系群構造・動態 の研究. 東京大学(博士論文). 121 pp.
- Nishida, T. 1992. Consideration of stock-structure of yellowfin tuna (*Thunnus albacares*) in the Indian Ocean based on fishery data. Fish. Ocean., 1: 143-152.
 - http://www.iotc.org/files/proceedings/2001/wptt/IOTC-200 1-WPTT-16.pdf(2005 年 11 月 14 日)
- Nishida, T., and Kitakado, T. 2021. Preliminary stock assessment of Indian Ocean yellowfin tuna using Statistical-Catch-At-Size (SCAS) (1950-2020). OTC-2021-WPTT23-INF02_REV1. 22 pp.
- Nishida, T., Matsuura, H., Shiba, Y., Tanaka, M., Mohri, M., and Chang, S.-K. 2005. Did ecological anomalies cause 1993 and

2003-2004 high catches of yellowfin tuna (Thunnus albacares) in the western Indian Ocean? and - review of other possible causes (strong recruitments, high catchabilities and excess fishing efforts). IOTC 7th Working Party for Tropical Tuna (IOTC-2005-WPTT-27). 25 pp.

西田 勤・松浦 浩・柴 友紀子・田中美弥子・毛利雅彦・張 水 楷.2006. 西インド洋キハダ大量漁獲(1993 及び 2003~04) の原因と資源管理について. 2007 年度水産海洋学会要旨集.

Potier, M., Marsac, F., Cherel, Y., Lucas, V., Richard Sabatié, R., Maury, O., and Ménard, F. 2007. Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fish. Res., 83: 60-72.

Romena, N., and Nishida, T. 2001. Factors affecting distribution

of adult yellowfin tuna (Thunnus albacares) and its reproductive ecology in the Indian Ocean based on Japanese tuna longline fisheries and survey information. Brussels Fee University. 94 pp.

Saji, N.H., Goswami, B.N., Vinayachandran, P.N., and Yamagata. T. 1999. A dipole mode in the tropical Indian Ocean. Nature 401 (6751): 360-363.

Xu, L.X., Song, L.M., and Wang, J.Q. 2006. Catch rate comparison between the circle hooks and the ring hooks in the tropical high seas of the Indian Ocean based on the observer data. IOTC-2006-WPTT-12.

Yano, K., 1990. An interim analysis of the data on tuna tagging collected by R/V Nippon Maru in the Indian Ocean, 1980-90. FAO/IPTP/SEAC/90/17: 107-124.

キハダ (中西部太平洋) の資源の現況 (要約表) *

資源水準	低位
資源動向	減少
世界の漁獲量 (最近5年間)	42 万~45 万トン 最近(2020)年: 43 万トン 平均: 43 万トン(2016~2020 年)
我が国の漁獲量 (最近5年間)	2,100~4,000 トン 最近(2020)年:2,100 トン 平均:3,100 トン(2016~2020年)
管理目標	MSY:35 万トン(80%信頼区間:29 万~41 万トン)
資源評価の方法	SS3 による解析 漁獲動向、はえ縄・まき網漁業 CPUE、サイズデータ、生物情報、及び標 識データ等により水準と動向を評価。
資源の状態	SSB ₂₀₂₀ / SSB _{MSY} = 0.87 (80%信頼区間: 0.63~1.10) F ₂₀₂₀ / F _{MSY} = 1.32 (80%信頼区間: 0.68~1.95) 資源状況は減少傾向にあり、漁獲圧・資源量ともに MSY レベルを維持できない状況にある。
管理措置	キハダ資源回復措置(漁法別漁獲制限・違反に対する削減措置)(決議 21/01)、まき網(FAD・支援船)管理措置(決議 19/02)。各魚種共通 の管理措置(決議)として、漁船数制限(決議 03/01)、義務提出デー タ(決議 15/01:ログブックによる漁獲量・漁獲努力量報告、及び決議 15/02:漁獲量報告)、オブザーバープログラム(決議 11/04)等がある。
管理機関・関係機関	ютс
最近の資源評価年	2021年
次回の資源評価年	2024年

^{*2020}年までのデータを使用した資源評価の結果に基づく。

付表 1. インド洋キハダの海域別漁獲重量(1950~2020年)(トン)

IOTC データベース(IOTC 2021a)に基づく。F51:西インド洋(FAO 漁業統計海域 51)、F57:東インド洋(FAO 漁業統計海域 57)。

全ノく。	F31・四1 /	下注(FAU 漁	長が応1/母/以31/
年	F51 (西部)	F57 (東部)	総計
1950	3,502	815	4,317
1951	3,179	1,583	4,762
1952	3,269	5,151	8,420
1953	3,474	8,071	11,545
1954	9,300	17,696	26,996
1955	37,244	13,472	50,716
1956	47,764	18,725	66,488
1957	21,115	19,079	40,194
1958	17,787	13,278	31,066
1959	20,103	10,869	30,971
1000	20,100	10,000	00,071
1000	20.004	45.000	44.000
1960	29,064	15,332	44,396
1961	31,137	11,684	42,821
1962	35,389	20,705	56,094
1963	23,432	11,977	35,409
1964	23,549	12,765	36,314
1965	26,148	11,937	38,084
1966	44,684	12,875	57,559
1967	32,127	14,558	46,685
1968	78,913	13,535	92,448
1969	51,714	15,511	67,224
1970	26,215	19,868	46,083
1971			46,816
	35,162	11,654	
1972	36,238	11,709	47,948
1973	31,518	11,914	43,432
1974	35,642	12,001	47,642
1975	33,240	16,290	49,530
1976	32,272	19,960	52,232
1977	53,929	23,315	77,244
1978	43,813	22,098	65,911
1979	35,554	21,045	56,598
1070	00,004	21,040	00,000
4000	00.054	04.407	54.500
1980	30,054	24,467	54,522
1981	38,231	21,961	60,191
1982	49,833	21,885	71,719
1983		21,095	
	54,686		75,781
1984	100,644	21,226	121,871
1985	113,051	23,231	136,281
1986	130,592	21,630	152,221
1987	146,401	23,077	169,478
1988	196,203	28,261	224,464
1989	159,258	54,070	213,328
1990	196,468	57,264	253,733
1991	187,344	56,636	243,979
1992	255,464	68,224	323,688
1993	332,011	72,842	404,853
1994	237,392	100,442	337,834
1995	266,274	84,106	350,380
1996	258,224	100,281	358,505
1997	244,627	114,160	358,787
1998	209,563	118,236	327,798
1999	255,614	118,618	374,232
	,	, 0	,
2000	254 722	04.000	240 040
2000	254,732	94,086	348,818
2001	249,874	80,742	330,616
2002	275,591	81,989	357,580
2003	378,118	87,898	466,016
2004	439,506	99,707	539,214
2005	424,128	102,776	526,905
2006	344,345	95,595	439,940
2007	242,852	91,904	334,756
2008	245,692	88,092	333,784
	193,797	83,974	
2009	193,191	03,914	277,771
		_	
2010	221,543	93,604	315,147
2011	255,476	80,452	335,928
2012	311,288	88,358	399,646
2013	319,023	81,862	400,885
2014	327,961	78,011	405,972
2015	338,835	63,992	402,828
2016	367,921	59,699	427,619
2017	360,805	61,012	421,818
2018	368,295	73,845	442,140
2019	373,412	75,230	448,642
2020	350,244	82 380	432,624
2020	330,244	82,380	402,024

付表 2. インド洋キハダの国・地域別漁獲重量(1950~2020 年)(トン) IOTC データベース(IOTC 2021a)に基づく。

10107	<u> </u>	\ (IUIC2	2021a) V	と至って。								
年	スペイン	フランス	スリランカ	インドネシア	台湾	日本	イラン	モルディブ	セーシェル	イエメン	その他	総計
1950	****	****	524	130	****	****	90	1,500	****	228	1,845	4,317
1951	****	****	783	750	****	****	90	1,500	****	228	1,410	4,762
	****	****			****				****			
1952			609	815		3,683	90	1,500		286	1,437	8,420
1953	****	****	437	828	****	6,757	90	1,500	****	286	1,648	11,545
1954	****	****	409	1,022	210	21,666	90	1,500	****	286	1,813	26,996
	****	****							****	286		
1955			380	1,022	690	44,163	90	2,000			2,086	50,716
1956	****	****	502	1,084	1,091	59,485	84	2,000	****	228	2,015	66,488
1957	****	****	945	1,035	1,254	31,864	84	1,931	****	228	2,853	40,194
1958	****	****	1,025	1,034	1,827	22,644	84	1,931	****	228	2,292	31,066
	****	****							****			
1959			1,106	1,035	2,383	22,182	84	1,931		286	1,964	30,971
1960	****	****	1,437	1,022	2,244	36,055	84	966	****	228	2,361	44,396
1961	****	****	1,769	1,096	2,881	32,730	84	1,449	****	228	2,586	42,821
	****	****										
1962			2,663	1,357	3,472	44,191	84	1,449	****	228	2,650	56,094
1963	****	****	3,559	1,383	3,406	21,981	84	1,449	****	228	3,319	35,409
1964	****	****	3,444	1,409	2,863	22,163	72	1,449	****	228	4,686	36,314
1965	****	****	3,328	1,485		24,926	77	966	****	257		38,084
					2,183						4,862	
1966	****	****	2,959	1,719	4,373	40,762	78	1,449	****	257	5,963	57,559
1967	****	****	3,254	1,747	3,384	30,163	84	1,642	****	286	6,125	46,685
1968	****	****	3,686	1,745	22,670	48,326	103	1,642	****	286	13,991	
	****	****							****			92,448
1969	***	***	4,119	1,809	21,111	23,114	89	1,738	****	286	14,959	67,224
1970	****	****	3,237	1,584	14,884	10,340	81	2,534	100	226	13,097	46,083
	****	****										
1971			2,354	1,536	11,943	13,370	84	1,560	100	255	15,614	46,816
1972	***	****	3,890	1,914	11,841	7,884	82	2,691	100	283	19,263	47,948
1973	****	****	4,727	2,273	5,707	3,934	80	7,170	100	311	19,131	43,432
1974	****	****	4,147	2,773	4,397			5,344		736		47,642
	****					4,949	366		150		24,781	
1975	****	****	3,286	4,259	4,637	6,420	365	4,900	100	866	24,697	49,530
1976	****	****	5,993	4,950	3,355	2,779	1,276	5,717	50	980	27,131	52,232
1977	****	****	5,775	6,011	8,079	2,134	1,076	5,326	80	1,039	47,724	77,244
	****	****										
1978			6,472	4,391	4,245	4,835	373	4,276	100	1,131	40,088	65,911
1979	****	****	5,863	4,353	3,704	3,398	755	5,128	128	1,046	32,223	56,598
1980	****	****	8,310	5,358	3,806	3,358	604	5,082	357	1,151	26,496	54,522
	000	400										
1981	363	188	9,631	6,203	4,101	4,949	227	6,251	949	924	26,405	60,191
1982	55	1,081	9,022	7,561	4,715	7,400	506	4,814	518	830	35,216	71,719
1983	****	10,400	8,389	5,535	5,580	7,991	478	7,981	157	1,553	27,716	75,781
1984	11,453	39,269	6,498	5,674	5,813	8,145	491	8,486	131	2,414	33,498	121,871
1985	18,420	37,706	7,104	5,838	7,322	9,540	489	7,136	177	3,163	39,388	136,281
1986	20,017	40,947	7,141	6,145	16,217	10,864	643	6,353	10	3,951	39,935	152,221
1987	26,258	41,012	7,508	6,858	22,375	8,570	935	7,595	8	4,682	43,677	169,478
1988									3			
	44,928	56,765	7,808	9,068	22,765	9,645	1,011	6,218		5,449	60,805	224,464
1989	41,070	33,547	8,450	11,303	22,426	5,475	980	5,776	****	6,270	78,031	213,328
1990	43,711	45,351	9,460	10,406	31,659	9,309	2,280	5,140	15	6,989	89,412	253,733
1991			11,277			,	3,238		372		79,386	243,979
	44,023	38,135		12,343	30,740	9,450		7,227		7,789	,	
1992	37,836	45,282	13,347	15,560	56,006	17,715	13,951	8,309	225	8,555	106,900	323,688
1993	47,802	39,539	15,489	20,049	88,343	16,676	20,646	9,605	****	7,632	139,073	404,853
1994	43,149	35,819	19,681	24,964	34,078	15,057	26,356	12,621	8	8,341	117,759	337,834
1995	65,143	39,635	18,436	27,118	23,112	12,778	25,907	12,031	5	13,255	112,959	350,380
1996	59,431	35,577	22,757	43,759	27,850	16,727	30,234	11,811	71	15,057	95,229	358,505
1997	60,986	31,227	27,302	50,631	18,374	18,216	22,024	12,489	2,882	17,148	97,508	358,787
1998	38,588	22,382	26,833	46,660	23,416	18,753	21,534	13,566	7,460	19,214	89,392	327,798
1999	51,919	30,799	32,945	53,121	17,686	16,166	27,085	13,261	9,949	21,274	100,028	374,232
2000	49,512	37,694	28,217	40,994	17,367	16,431	15,743	11,625	11,885	23,324	96,026	348,818
2001	47,734	31,252	23,857	39,797	26,926	14,543	20,153	13,656	13,436	25,374	73,888	330,616
2002	53,532	34,567	26,048	34,639	33,183	14,378	24,045	20,610	17,139	27,424	72,014	357,580
2003	78,968	63,101	37,678	30,839	29,720	17,810	37,722	18,833	34,733	25,549	91,063	466,016
2004	80,820	63,174	39,628	30,387	49,793	16,361	50,720	21,404	52,843	31,525	102,559	539,214
2005	77,546	57,198		31,405			43,185		44,821	26,618		526,905
			32,826		67,608	22,386		20,513			102,798	
2006	71,076	44,495	38,915	24,787	34,677	22,616	39,521	21,772	31,036	19,477	91,567	439,940
2007	37,849	32,660	32,570	29,835	25,708	19,555	15,845	20,663	18,352	16,091	85,628	334,756
2008	46,161	37,643	32,139	29,909	16,572	11,656	18,729	22,609	21,348	13,833	83,184	333,784
2009	33,607	22,192	34,587	26,735	13,472	5,435	20,757	19,611	21,901	14,980	64,495	277,771
2010	45,298	22,599	39,949	29,289	13,800	3,820	30,876	21,068	26,002	16,098	66,347	315,147
2011	52,350	21,201	30,215	33,550	12,782	4,893	26,740	34,941	26,494	25,016	67,746	335,928
2012	57,925	23,732	37,520	31,293	12,989	3,562	34,965	44,261	28,406	35,891	89,101	399,646
2013	68,664	21,671	32,231	32,807	12,754	4,253	32,403	45,859	27,543	32,191	90,508	400,885
2014	58,229	33,513	37,778	25,275	12,285	4,072	46,216	49,212	25,079	29,180	85,132	405,972
2015	52,885	31,047	32,673	25,945	13,921	3,478	42,599	52,439	41,468	24,518	81,855	402,828
2016	51,660	33,719	33,735	22,636	16,958	3,389	45,110	53,705	43,261	21,253	102,193	427,619
2017	54,596	29,962	37,977	22,162	9,115	4,003	56,121	49,361	46,056	18,061	94,404	421,818
2018	45,369	30,057	39,817	22,635	10,845	3,382	58,650	47,217	42,051	18,077	124,041	442,140
2019	42,318	27,206	44,756	35,567	9,427	2,597	58,044	44,702	41,497	18,110	124,418	448,642
2020	44,260	24,524	37,013	36,517	9,075	2,085	48,314	42,705	38,250	18,154	131,727	432,624
	,		, , , , ,	,-	,			,		,	· · · · · · · · · · · · · · · · · · ·	

**** 操業なし

(注) 西インド洋の EU (フランス・スペイン) 大型船によるまき網漁業は 1983 年から本格的に始まった。

付表 3. インド洋キハダの漁法別漁獲重量(1950~2020 年)(トン) IOTC データベース(IOTC 2021a)に基づく。

年	まき網	はえ縄	ライン	流し網	竿釣り	その他	総計
1950	****	****	1,198	1,090	1,938	91	4,317
1951	****	****	1,495	1,267	1,912	87	4,762
1952	****	3,683	1,505	1,335	1,827	69	8,420
1953	****	6,757	1,493	1,484	1,758	54	11,545
1954	****	21,876	1,695	1,572	1,792	61	26,996
1955	****	44,853	1,855	1,606	2,333	69	50,716
1956	***	60,576	1,875	1,532	2,418	87	66,488
1957	***	33,118	2,232	2,370	2,381	93	40,194
1958	****	24,471	2,335	1,713	2,440	106	31,066
	****					79	
1959		24,565	2,269	1,750	2,307	79	30,971
4000	****	20.200	0.504	4 000	4.544	404	44.000
1960	****	38,299	2,531	1,902	1,544	121	44,396
1961	****	35,611	2,917	1,931	2,206	158	42,821
1962		47,663	3,446	2,505	2,300	180	56,094
1963	5	25,387	4,023	3,216	2,545	232	35,409
1964	22	25,288	4,163	3,942	2,647	252	36,314
1965	12	27,805	3,965	4,124	1,966	212	38,084
1966	****	45,847	3,588	5,740	2,221	162	57,559
1967	****	33,880	4,091	5,916	2,598	200	46,685
1968	****	79,585	4,158	6,027	2,497	181	92,448
1969	****	54,155	4,376	5,848	2,652	194	67,224
		,	,	-,-	,		,
1970	0	32,790	4,523	5,344	3,264	162	46,083
1971	1	34,976	4,638	4,664	2,391	147	46,816
1972	2	32,018	5,958	5,952	3,812	206	47,948
	1	,		5,680			43,432
1973		21,452	7,123		8,916	259	
1974	2 ****	23,090	8,590	8,062	7,644	254	47,642
1975		25,101	9,460	8,926	5,817	226	49,530
1976	****	21,923	12,057	10,889	6,992	371	52,232
1977	34	46,492	12,730	11,187	6,471	330	77,244
1978	944	37,232	12,027	9,038	6,098	572	65,911
1979	800	26,974	12,021	9,540	6,693	571	56,598
1980	896	22,933	14,750	8,931	6,398	613	54,522
1981	1,104	24,386	15,952	9,997	8,107	646	60,191
1982	2,364	34,657	16,099	10,936	6,913	750	71,719
1983	13,646	31,572	14,123	6,528	9,356	555	75,781
1984	61,931	25,839	15,382	8,371	9,798	550	121,871
1985	68,521	30,582	18,134	8,572	9,587	885	136,281
1986	72,238	45,721	16,947	8,938	7,815	562	152,221
1987				11,730		761	
	79,191	47,578	20,597		9,622		169,478
1988	116,877	55,327	23,891	20,016	7,707	645	224,464
1989	86,429	66,044	26,120	26,318	7,646	771	213,328
1000	100 010	00.007	00.000	04.000	7.500	000	050 700
1990	109,919	86,927	26,902	21,606	7,520	860	253,733
1991	106,785	80,339	26,161	20,531	9,368	795	243,979
1992	113,532	139,036	28,095	32,078	10,225	723	323,688
1993	129,385	199,728	30,738	31,754	12,152	1,096	404,853
1994	115,714	125,888	34,874	44,948	15,359	1,051	337,834
1995	150,345	91,702	42,365	49,179	15,520	1,269	350,380
1996	132,220	117,656	42,460	49,723	15,167	1,280	358,505
1997	134,774	117,988	46,464	44,371	13,815	1,376	358,787
1998	103,396	117,963	47,376	43,112	14,573	1,378	327,798
1999	137,936	116,717	49,054	54,689	14,330	1,506	374,232
2000	143,278	101,726	51,137	39,778	11,492	1,406	348,818
2001	129,829	92,021	51,586	43,777	12,209	1,194	330,616
2002	139,647	96,802	56,818	45,442	17,591	1,280	357,580
2003	226,514	101,401	56,317	62,882	17,276	1,625	466,016
2003	231,132	132,740	72,888	84,872	15,876	1,706	539,214
		,					
2005	197,856	170,774	66,742	72,877	16,822	1,835	526,905
2006	163,229	124,988	59,477	72,031	18,021	2,193	439,940
2007	101,829	99,114	61,772	53,555	16,326	2,160	334,756
2008	120,945	73,854	58,392	60,306	18,279	2,008	333,784
2009	92,570	59,742	53,908	52,670	16,827	2,054	277,771
2010	110,835	60,341	62,982	64,529	14,105	2,355	315,147
2011	118,628	56,440	86,685	57,848	14,009	2,318	335,928
2012	136,238	57,293	115,110	72,749	15,512	2,744	399,646
2013	142,592	55,719	110,580	65,191	24,055	2,748	400,885
2014	142,152	39,373	120,651	80,416	20,542	2,839	405,972
2015	151,459	39,840	108,917	82,572	17,642	2,397	402,828
2016	156,119	36,101	137,643	82,881	12,391	2,484	427,619
2017	156,034	32,059	118,845	94,515	18,370	1,994	421,818
2018	146,788	38,979	141,280	92,437	20,030	2,626	442,140
2019	150,797	41,219	154,481	80,359	18,625	3,162	448,642
_0.0	,	,	,	,000	,	-,	,
2020	135,551	35,928	177,340	64,843	16,992	1,969	432,624
	.00,001	00,020	,0.10	0.,010	. 0,002	.,000	.o., o. T

**** 操業なし

⁽注 1) はえ縄は遠洋(冷凍)・沿岸(生鮮)の2種、まき網は素群れ操業と流れもの操業の2種、ラインは手釣り・ひき縄・沿岸はえ縄の3種、その他には、途上国小規模漁業の地びき網、底びき網、定置網等がある。

⁽注 2) 西インド洋の EU の大型船によるまき網漁業は 1983 年から本格的に始まった。