マグロ類 RFMO における管理方策 (総説)

-漁業資源の「管理戦略」とは。そしてその評価方法である MSE について-

管理戦略とは

水産資源の管理は、科学者が提供した資源評価や将来予測の結果をもとに、管理者(行政官)が漁獲可能量等の具体的な管理措置を決定するのが一般的な手法である。その場合、資源評価のたびに漁獲可能量等が見直されることとなるが、そこで問題となるのは、資源評価が新たに実施されたところ結果が前回と大きく変わり、管理措置に大きな変更が求められたり、特に国際的な管理では資源評価のたびに各国の漁獲可能量の割り当てについての交渉に膨大な時間と労力が費やされ、場合によっては新しい措置に合意できないことがあったりすることである。さらに、より大きな問題として、そのようなアプローチでは、決定されるのはわずか数年後までの漁獲可能量であることが多いため、資源管理のあり方や長期的なビジョン等について考慮することができず、ひいては短期的な利益ばかりが追及され、長期的に望ましい資源管理が達成できない恐れがある。

このような古典的な資源管理の課題に対応するため、1990年代から盛んになってきた資源管理に関する予防的アプローチにおいては、資源管理において「管理戦略」を導入することが推奨されている(FAO 1995)。管理戦略という言葉は複数の意味で用いられることがあるが、ここでは、①漁獲を管理するための漁獲管理ルール(Harvest Control Rule: HCR)、②資源状態を推定するための資源評価手法(資源評価に用いられるデータ準備のルールを含む)、の2つの要素のパッケージを指すこととする*1(図1右)。これらの要素をカバーする管理戦略があらかじめ合意されていれば、年ごとの決定事項については、あらかじめ決定されたルールに基づいて、データを収集し、

資源評価モデルに取り込んで資源評価を行い、漁獲管理ルールに基づいて具体的な管理措置(例えば漁獲可能量)が導き出される。すなわち、毎年の漁獲可能量が、資源評価手法の見直しや複雑な交渉を経ることなく、あらかじめ合意されたプロセスに基づいてほぼ自動的に計算されることとなるのである。そして、このような長期間適用される管理戦略を議論していくためには、必然的に「資源をどのように管理していきたいか」という長期的なビジョンを明らかにする必要が生じてくる。このような長期的な資源管理のビジョンは「管理目標」と呼ばれ、管理者を含む利害関係者(ステークホルダー)は、管理戦略の検討に当たってまずこれを定める必要がある。これはその漁業あるいは資源をどのように管理していきたいか、そのあるべき姿を規定するものである。

次に、管理戦略の要素について詳しく説明する(図 1 右)。 まず、漁獲を管理するための HCR であるが、これは資源の状態に応じて漁獲をどのように管理するかについての約束事である。例えば、資源状態が良い時はそれを維持できるような漁獲を行い、資源が低下した場合には資源が回復するように漁獲量を削減するというようなルールを、資源状態全体に対してあらかじめ定めておく。それを具体的に示すと例えば図 2 のようになる。この例では横軸に資源量、縦軸に漁獲圧力が示されているが、この HCR に従えば、資源量が $B_{Threshold}$ (漁獲圧力が削減され始める資源量。この場合は B_{MSY})を上回っている場合は漁獲圧力を F_{target} で維持するが、 $B_{Threshold}$ を下回った場合には漁獲圧力を B_{min} を下回る場合には漁獲圧力を B_{min} にすることになる。

*1 管理戦略に関する用語の統一は国際的にも必ずしもきちんとなされていない。ここでは、管理戦略(management strategy)を harvest strategy や management procedure(管理方式)と同義として扱うが、management strategy や harvest strategy は管理の方針やモニタリング戦略等も含んだ、management procedure よりも包括的な概念として扱われる場合もある(例:WCPFC)。

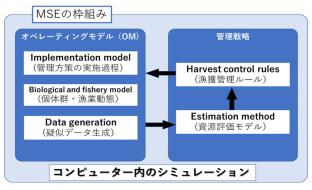


図 1. MSE、OM(後述参照)、管理戦略の概念図

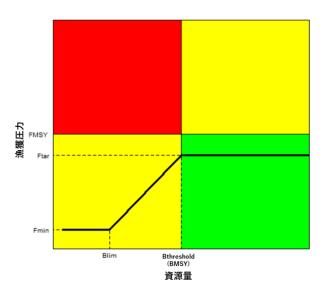


図 2. HCR の一例

資源量が $B_{Threshold}$ を上回っている場合は漁獲圧力を F_{target} で維持するが、 $B_{Threshold}$ を下回った場合には漁獲圧力を削減していき、資源量が B_{limit} を下回る場合には漁獲圧力を F_{min} にする。

HCR において具体的なアクションの基準となる値を「管理基準値(reference point)」と呼ぶ。図 2 における B_{Threshold}(この図では B_{MSY} となる)や、漁獲圧力が F_{min} となる資源量(B_{Imit})等がこれに該当する。漁獲圧力が F_{min} となる資源量(F_{min} がゼロに設定される場合も多いが、必ずしもゼロにしなければならないわけではない)は限界管理基準値(Limit Reference Point)と呼ばれ、LRP や B_{Imit} と表記される(我が国の新しい資源管理では B_{ban} に相当。 なお日本の B_{ban} では漁獲圧力はゼロとなる)*2。限界管理基準値は生物学的な情報に基づいて定められるもので、それを下回ると資源の持続性にとって望ましくないと考えられるレベルであり、管理戦略を定めるに当たってはこれを下回る確率は「非常に低く」することが望ましいとされる。さらに、限界管理基準値を下回った場合には資源を速やかに回復させる措置が導入される必要がある。

一方で、資源の望ましい状態を規定するのが目標管理基準値 (Target Reference Point)である。こちらは TRP や Btar と表記される。限界管理基準値が基本的に生物学的な情報に基づいて定められるのに対し、目標管理基準値は社会経済的な視点も考慮した上で望ましい資源のありようを規定するものであり、例えば「望ましい漁獲効率が得られる資源レベル」や「資源の持続性に懸念が生じないレベル」等に定めることができる。図2では、資源状態が高い時には漁獲圧力を Ftarget に設定することにより、資源を長期的に望ましい状態に保つことが意図されている。Ftarget が FMSY より低く設定されれば、長期的に資源は平均で BMSY 以上に維持されることが期待される。

これらの具体的な管理基準値は、魚種ごとに科学的情報をもとに関係者で議論して決定する(管理戦略の評価(MSE)の項参照)。目標管理基準値も限界管理基準値も、資源量(図2の横軸)で定めることも漁獲圧力(図2の縦軸)で定めることも

*2 管理基準値の定義も国際的に統一されていない。例えば、漁獲圧力の減少が LRP を下回った時点から導入される場合もある。したがって、管理基準値の値だけでなく、HCR の中でどのように位置づけられているのかを確認することが重要である。

可能であるし、違う指標、例えば CPUE(漁獲効率)等に基づいた HCR を規定することも可能である。すなわち、さまざまな形態の HCR が可能である。現在、地域漁業管理機関 (RFMO)においてマグロ類で採用されている管理基準値には以下のようなものがある(表 1)。 RFMO によってアプローチが違うことが見て取れる。 WCPFC 以外の RFMO では、基本的に B_{MSY} を目標管理基準値としている一方、 WCPFC では B_{MSY} の近似値として初期資源の 20%を限界管理基準値としてこれまで採用している。

次に管理戦略に組み込まれる資源評価とそこで用いられる データ準備の手法について述べる。管理戦略によって具体的な 管理措置を定めるに当たっては当然資源の状態に関する情報 が用いられるが、資源評価が管理戦略の一部として含まれてい るのは資源評価の手法をあらかじめ固定するためである。通常、 資源評価を実施するにあたっては、多くの場合、その都度改善 の可能性が模索されるため、結果的に資源評価の手法が変わり その結果も変動することがある。しかしながら、長期的な管理 を定める管理戦略においては、資源評価手法の定期的な改善を 前提とすると長期的なルールが確立できないため、策定に当た って資源評価の手法についてもあらかじめ合意する必要があ る。また、管理戦略を動かすために用いられるデータについて も同様に、集め方、及び分析手法について合意する必要がある (あるいは CCSBT で採用されている管理方式のように、収集 したデータから資源評価を経ずに簡単な計算ルールに基づい て漁獲可能量を計算する手法もある)。こうすることによって、 将来のデータについても決まったルールに基づいて収集され、 分析され、資源評価に提供されることとなる。管理戦略がきち んと機能するためには、これらの3つの要素(HCR、資源評価 手法、データ収集手法)があらかじめ明確に規定され、合意さ れていることが不可欠である。

管理戦略の評価 (MSE)

しかしながら、管理戦略はある程度長期的に漁業の管理を規定するものであり、それに合意するということは、例えれば漁獲可能量がほぼ自動的に計算される「自動操縦システム」に合

表 1. 地域漁業管理機関(RFMO)において採択されている管理基準値

	カツオ	メバチ	キハダ	ビンナガ	クロマグロ (及びミナミマグロ)
IATTC	-	LRP:初期資源の7.7% TRP:B _{MSY}	LRP:初期資源の7.7% TRP:B _{MSY}	-	-
ICCAT	-	-	-	(北資源) LRP:B _{MSY} の40% TRP:F _{MSY} の80%	TRP:B _{0.1} *1(東資源) TRP:B _{MSY} (西資源)
ЮТС	LRP:初期資源の20% TRP:初期資源の40%	LRP:B _{MSY} Ø50% TRP:B _{MSY}	LRP:B _{MSY} Ø40% TRP:B _{MSY}	LRP:B _{MSY} Ø40% TRP:B _{MSY}	-
WCPFC	LRP:初期資源の20% 暫定TRP:初期資源の 50%	LRP:初期資源の20%	LRP:初期資源の20%	LRP:初期資源の20% TRP(南資源):初期資源の56%	暫定回復目標:初期資源の6.8% 第二回復目標:初期資源の20%
ссѕвт	-	-	-	-	回復目標:初期資源の 30% ^{*2}

^{*1} B_{0.1} は F_{0.1} で長期的に期待される資源量。

^{*2 2035} 年までに初期資源の 20%水準を 70%の確率で達成することも併せて必要。

意することである。当然のことながら、そのような長期間使用 することが想定される自動操縦システムについては、そのシス テムがきちんと機能することが確認できている必要がある。こ の管理戦略の性能を評価するためのプロセスが「管理戦略評価 (Management Strategy Evaluation: MSE)」と呼ばれている (図1)。自動車の自動操縦システムであれば、直線道路で機 能するだけでなく、様々な交通事情や不測の事態にも対応でき ることが重要であるのと同様に、MSE において、管理戦略が対 象資源の想定される様々な状況 (不確実性) の下でもきちんと 機能することを、それが実行される前に確認することが重要で ある。具体的には、いくつかの管理戦略の候補を様々な状況の シミュレーションでテストして、より性能の良い管理戦略を選 ぶことになる。加えて、MSE のもう一つの重要な目的は、その プロセスに科学者だけでなくステークホルダー(行政官を含む) も参加してもらい、全ての関係者の議論を踏まえて長期的な管 理戦略に合意するという「合意の場」を提供することである (Punt et al. 2016)。ステークホルダーには漁業者や環境保護 団体等も含まれる。

MSE は複雑かつ時間のかかるプロセスであり(長い場合には5年あまり)、それに参加する科学者及びステークホルダー(行政官を含む)のそれぞれに重要な役割がある(図3)。ステークホルダーは、まず管理の長期的なビジョンとして管理目標を定める必要がある。この段階では、例えば「将来にわたって最大持続生産を維持する」、「漁獲量を最大化する」というような漠然としたもので構わない。次に、この管理目標を達成する管理戦略を選ぶために、より具体的な評価のための指標を設定し、その達成具合をシミュレーションを通じて比較することになる。この様な管理戦略の評価指標を performance indicator と呼んでおり、通常、持続性(例:資源状態)、安全性(例:限界管理基準値を下回る確率)、生産性(例:漁獲量)、安定性(例:漁獲量の変動)についての指標が検討されるが、必要に応じてさらなる指標が追加される(以下に詳細)。管理

戦略を比較する際にどのような指標を見て管理戦略を選択したいかを決定するのはステークホルダーである。

一方で科学者は、管理戦略の候補を評価するための仮想現 実として、オペレーティングモデル(Operating Model: OM) と呼ばれる資源動態モデルを準備する(図1及び3)。これは 実際の漁業データ等を用いてモデルを構築するという点で構 造的には資源評価モデルと同様であるが、データに最も合致す る「正解」を探そうとする資源評価モデルと異なり、不確実な 情報についてはあえて幅、選択肢を持たせることにより、「正 解」ではなく、可能性のある複数の設定のモデルを構築する点 が異なっている (例:図4)。これを OM の条件付け (Conditioning) と言う。つまり、一つの資源評価モデルに依 存すると、そのモデルが間違っていた際にそれで評価されてい た管理戦略も失敗する恐れがあるが、可能性のある複数のモデ ルによって評価することによって、不確実な状況にも対応でき る頑健な管理戦略を選び出すことができるという考え方であ る。従って、OM を構築する際には、想定される不確実性をき ちんと取り込んだ複数のモデル設定を構築することが重要で ある。例えば CCSBT では、不確実性を取り込むために 432 通 りにも設定された OM を用いて管理戦略が評価されている。

科学者によって現実の資源動態の可能性を十分に再現できる性能の良い OM が構築され、performance indicator がステークホルダーによって合意されたら、管理戦略の候補を OM におけるシミュレーションでテストしていくこととなる(図1及び3)。 OM は仮想の漁獲データを吐き出し、その仮想データを使って管理戦略のルールに従って資源評価が行われ、それ以降の漁獲ルールが決定され、それによる漁獲が OM に反映される、というシミュレーションのループが数十年分繰り返される(図1)。そしてその結果が performance indicator として出てくるので、複数の管理戦略候補の performance indicator を比較して、望ましい管理戦略を選んでいくこととなる。

管理戦略の比較に当たっては、performance indicator がト

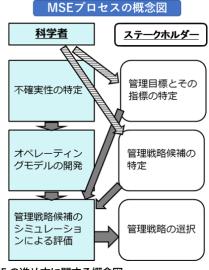


図 3. MSE の進め方に関する概念図

色の付いたボックスは主に科学者が策定し、白いボックスは主にステークホルダー(行政官を含む)が策定する (Punt *et al.* 2016) 。 斜線の矢印はアドバイスを示す。

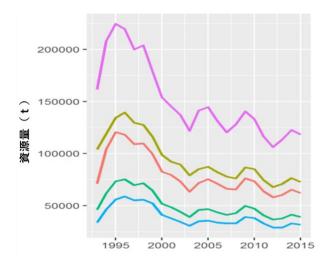


図 4. 北太平洋ビンナガの MSE で用いられている 5 つの OM による過去の資源量の推定値の推移

現在の資源評価モデルは赤のラインだが、不確実性を取り込むため設定を変えた他の 4 つのモデル(赤以外)も用いている(Tommasi and Teo 2019)。

レードオフの関係になることがあることを認識することも重要である。例えば、漁獲を増やすことと資源状態を高い状態に維持することは当然のことながらトレードオフの関係となる。どの指標がより重要かはステークホルダーの間でも立場によって異なる。従って、同じシミュレーション結果を見てもどの管理戦略を選好するかはステークホルダー間で必ずしも同じではない。そこで、全てのステークホルダーが受け入れられる妥当なレベルの様々なトレードオフのバランスを、管理戦略のシミュレーションの定量的指標の結果の比較を通じて探すのである(例:図5)。MSEの大きな有用性の一つは、ゴールの違う多様なステークホルダーが、MSE を通じて透明性を持った形でコンセンサスで管理戦略を選ぶ、ということにもある。

また、MSEのプロセスは一回限りのものではない。一度科学者が管理戦略のシミュレーションの結果を見せたとしても、最終的な合意に至るまでにそれを踏まえて様々な修正を加えたうえで再度シミュレーションを実施し結果を評価する、ということが繰り返されることも多い。そして、このような MSE のプロセスでは、ステークホルダーをきちんと関与させ、関係者すべての了解のもとで長期的な「自動操縦」ルールに合意する、というのが核心的に重要である。なお、MSE による管理戦略の検討はいつでもうまくいくというわけではない。例えば、データが資源の実態を全く捉えられていない場合には、データに基づいて OM を構築してそこで管理戦略を評価しても、現実では機能しない管理戦略となってしまう可能性や、不確実性をあまりにも大きく設定する場合には、管理戦略が不必要に保守的(算出される漁獲可能量が小さい)になってしまう可能性もある。

MSE 後(管理戦略の実施)

MSE を通じて管理戦略が合意されれば、それに基づいて実際の資源管理がなされることとなる。管理戦略に定められたルールに基づいてデータを収集し、漁獲可能量(あるいは努力量)を算出し、それが適用される。ここからは、適用された管理戦略が想定したとおりに適切に機能しているか検証していくこ

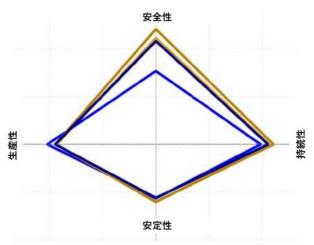


図 5. 管理戦略の候補を比較するための MSE のアウトプットの一例 ここでは4つの管理戦略の候補ごとに4つの評価軸についてのパフォーマンスが示されている(ICCAT 2019)。このような結果をもとにステークホルダー間で望ましい管理戦略を議論する。

とも重要となる。通常、資源量や漁業指標等をモニタリングすることにより、管理戦略が適切に機能しているか、継続的に監視していくこととなる。

モニタリングの結果、何らかの指標が想定から大きく外れた値を示すような場合には、管理戦略の実施あるいは想定に何か問題が生じていないか、さらなる検証が必要になる。そのような予想から外れる事態は「例外的な状況」と呼ばれ、その際に行うべきアクションは MSE を通じた管理戦略の開発の際にあらかじめ定めておく必要がある。例えば、ある指標が想定の範囲から逸脱した場合、あるいは管理戦略に使われるはずだったデータが収集されなくなった場合等、具体的な「例外的な状況」と、その程度に応じた対応まであらかじめ合意を得ておくことが求められる。

さらに、管理戦略が順調に機能していると考えられる場合でも、定期的に管理戦略をレビューすることも必要である (CCSBT の場合は6年に1度)。管理戦略は長期的な資源管理のルールではあるが、完成した後でも、定期的な点検とメンテナンスが重要となる。

マグロ類における管理戦略の検討状況の概略

マグロ類の資源管理を行う RFMO では、MSE を用いた管理 戦略の検討が積極的に進められている(Nakatsuka 2017)。以 下に、マグロ類地域漁業管理機関における管理戦略の検討状況 を簡単にまとめる。

CCSBT(みなみまぐろ保存委員会)

・資源評価に合意できない等、国際的な資源管理が行き詰り、 事態を打開するためにいち早く MSE の開発に取り組んだ。 2011 年に、MSE によって評価された管理戦略である Baliprocedure が合意され、以降これに基づいて漁獲可能量が 3 年ごとに決定され、3回の更新を経ている。2019 年に Baliprocedure が見直され、インプットデータを変えた新たな管 理戦略である Cape Town Procedure が採択され、2020 年に はこの新しい管理戦略に基づいた TAC が合意された。管理 戦略の採択により国際交渉の円滑化が図られるとともに、資 源の回復傾向が確認されている。

IATTC(全米熱帯まぐろ類委員会)

- ・2016 年に熱帯マグロ類(メバチ、キハダ、カツオ)を対象 とした HCR が採択されているが、管理の指針のようなもの であり、データ収集、資源評価手法や TAC の自動的な設定 までを含めた包括的な管理戦略ではない。
- ・管理措置案を評価する際に、事務局が MSE に近いシミュレーションを自主的に実施している。
- ・熱帯マグロ類(メバチ、キハダ、カツオ)を対象とする MSE の作業が進展中。

ICCAT(大西洋まぐろ類保存国際委員会)

・2017 年に、MSE に基づき北大西洋ビンナガの HCR が採択された(データ収集、資源評価手法まで含めた包括的な管理戦略ではない)。2020 年には、この HCR に基づいて算出された 2021 年の TAC が合意された。

- ・他に大西洋クロマグロ、北大西洋メカジキについて MSE の作業が進められている。大西洋クロマグロについては、2 系群の混合モデルという非常に複雑な OM の構築に時間がかかっており、2023 年からの TAC 採択を目指している。熱帯マグロ漁業についても MSE を実施することが決定されており、3 魚種の資源評価を OM として用いる方向で検討が進んでいるが、多魚種・多漁法という漁業をどのように管理していくのか、方向性は明確になっていない。
- ・MSE の実施や漁獲管理ルールの開発の基本方針に関する保存管理措置を採択済み。

IOTC(インド洋まぐろ類委員会)

- ・カツオについては 2016 年に HCR が採択されているが、これは MSE を完了した管理戦略とは考えられていない。 MSE に基づく管理戦略を開発すべく作業が進められている。
- ・ビンナガ、メバチ、キハダ、メカジキについても MSE の作業が進展中。
- ・2016年、管理戦略技術小委員会の設立に合意。

WCPFC(中西部太平洋まぐろ類委員会)

- ・管理戦略の基本方針に関する保存管理措置を 2014 年に採択。
- ・熱帯マグロ類についてはまだ管理戦略や HCR は採択されていない。現在、カツオの MSE を実施するための OM の開発が進められている。
- ・2017 年に太平洋クロマグロ、北太平洋ビンナガについて、 管理の方針を定めた「Harvest Strategy」が合意された。これ は管理の指針のようなものであり、漁獲可能量の自動的な設 定等を含むここでいう管理戦略とは異なる。
- ・北ビンナガについては、MSE による管理戦略の開発が進められており、これまでに複数回のステークホルダーとの意見 交換を行いながら議論が進められている。
- ・太平洋クロマグロについても 2024 年までに MSE を完了することが求められている。

ここまで見てきたとおり、MSE を通じた管理戦略の策定は 複雑で時間のかかるプロセスである。また、どのような資源で も MSE の開発が可能というわけではなく、複雑な科学的作業 とステークホルダーからの多様な要求に耐える基礎となる十 分なデータの存在が前提となる。このような MSE を通じた管 理戦略の策定を、RFMO というそれ自身が国際交渉という複雑 さを抱えている国際交渉の場で達成することは簡単ではない (Nakatsuka 2017)。CCSBT 等の成功例も存在するが、例えば ICCAT における大西洋クロマグロの MSE では、開始から 5年 が経過するもののいまだに OM が合意されず、管理戦略の合 意の見通しは立っていない。RFMOにおけるMSEにおいては、 漁業やステークホルダーの複雑さ、意思決定機関(委員会)と 科学者との意思疎通の構造的な難しさ、長期的な管理戦略に同 意することへの交渉担当者のためらい、MSE の開発中は通常 の資源評価に割ける時間・労力等が削減されること等、MSE 自 体の難しさに加えて国際交渉特有の課題が上乗せされる。MSE に基づく管理戦略を策定することは、基本的に資源管理にとっ て望ましいことではあり、今後とも国際的にもそれを求める声 は強まるものと予想され、実際に各 RFMO でも取り組みが進められているが、今後 RFMO で MSE に基づく管理戦略が継続的に採択されていくか、予断を許さない状況である。

執筆者

くろまぐろユニット くろまぐろサブユニット 水産資源研究所 水産資源研究センター 広域性資源部 中塚 周哉

参考文献

FAO. 1995. Code of Conduct for Responsible Fisheries. http://www.fao.org/docrep/005/v9878e/v9878e00.htm (2020 年 11 月 24 日)

ICCAT. 2019. Report of the 2019 Intersessional Meeting of The ICCAT Bluefin Tuna Species Group.

https://www.iccat.int/Documents/Meetings/Docs/2019/RE PORTS/2019_BFT_ENG.pdf(2020年11月24日)

Nakatsuka, S. 2017. Management strategy evaluation in regional fisheries management organizations - How to promote robust fisheries management in international settings. Fish. Res., 187: 127-138.

Punt, A.E., Butterworth, D.S., de Moor, C.L., de Oliveira, J.A.A., and Haddon, M. 2016. Management strategy evaluation: best practices. Fish Fish., 17: 303-334.

Tommasi, D., and Teo, S.L.H. 2019. Summary of results fo r the North Pacific albacore tuna (*Thunnus alalunga*) m anagement strategy evaluation.

http://isc.fra.go.jp/pdf/ALB/ISC19_ALB_1/ISC19-ALBWG-01 _01.pdf(2020年11月24日)