ニュージーランドスルメイカ・オーストラリアスルメイカ ニュージーランド海域

(Wellington Flying Squid, Nototodarus sloanii & Gould's Flying Squid, Nototodarus gouldi)

ニュージーランドスルメイカ

ニュージーランド海域で漁獲されるスルメイカ類は、一般 に"ニュージースルメ"と呼ばれている。しかし、実際には、 ニュージーランドスルメイカ (Nototodarus sloanii) (写真 左) 及びオーストラリアスルメイカ (Nototodarus gouldi) (写 真右)の2種からなる。両種は、主としてニュージーラン ド海域におけるトロール船といか釣り船により漁獲され、こ の海域ではこれら2種以外にミナミスルメイカ(Todarodes filippovae)、アカイカ (Ommastrephes bartramii)、ニセス ルメイカ (Martialia hyadesi) 等のアカイカ科も分布する。 漁業対象となるのは前者2種であり、両者は形態的に似て いるため、市場では区別されず"ニュージースルメ(ニュー ジーランドスルメイカ)"等と呼ばれ、FAO(国際連合食糧 農業機構) の統計でも Wellington Flying Squid (Nototodarus sloanii) 1種として取り扱われているが、この統計に実際に は2種が含まれている。なお、本稿において両種を区別し ない場合には、便宜的に "NZ スルメ類" とし、個々の種に関 する場合には "ニュージーランドスルメイカ" または "オー ストラリアスルメイカ"として記載する。

最近の動き

ニュージーランド政府が自国水域内で操業する漁船を原則として自国船籍船に限るとの法改正を行ったことから(2014年8月7日NZ議会通過)、2016年5月1日以降、操業にはNZ船籍への転籍が必要となった(Ministry for Primary Industries-Foreign Charter Vessels update 2016)。これを受け、当海域での我が国のいか釣り船は、2016年漁期(2015年12月~2016年4月)を最後に1隻が操業した。資源量水準は、1987~2015年漁期の我が国いか釣り船のCPUEデータから判断すると低位であり、本資源の総漁獲量ベースで見ると、2014年の各国による本資源の総漁獲量は約

オーストラリアスルメイカ

2.4. 万トンで、2004 年以降低迷しており減少傾向が続いている。しかし、2016 年(2015 年 10 月 1 日~2016 年 9 月 30 日)の NZ 水域の水揚げ数量を見ると 4.3 万トンとなっており(Ministry for Primary Industries -NZ Fisheries Info 2016)、本資源の回復の兆しもみられる。

利用·用途

いか飯や焼するめに加工することが多い。原料特性として 皮の色がきれいなため、さきいか材料にした場合はきれいな 仕上がりになる。しかし、味がスルメイカやアルゼンチンマ ツイカより劣ること、毛羽立ちが悪いことから前2者より 評価が低い。ただし、サイズもスルメイカに似ており、加工 しやすいことから価格次第ではいろいろな用途に仕向けられ ることが可能であり汎用性が高い。

漁業の概要

ニュージーランド海域のNZスルメ類の資源は、1960年代までは未開発であった。1960年代末の日本近海スルメイカの不漁を契機に、神奈川県のいか釣り船により本海域で初めての日本船による操業が試みられた(加藤・三谷 2001)。その結果が良かったことや日本近海での操業の裏作に好適であることから、遠洋海域で初めて本格的にNZスルメ類を対象とする釣り操業が行われた。その後、いか釣り船の隻数は急速に増加し、1970年代中頃には150隻前後となり、その後も2万~4万トンを漁獲するようになった。

また、同時期に、我が国のトロール船も同いか類を漁獲するようになった。1978年に200海里水域が設定されると、我が国のトロール船による漁獲量は急速に伸び、年間2万トン前後に達した。これは、トロール船の漁獲努力量が、規制の厳しくなった底魚から比較的緩いNZスルメ類へ向けられたためである。1980年には、両漁法を合わせた我が国のNZスルメ類の総漁獲量は6万トンを超えるようになった(表

表 1. 各国の NZ スルメ類の漁獲量(水揚げ)の変遷(Wellington Flying Squid 及び南西太平洋のいか類を含む) (データ:FAO 2016)(単位:トン)空白は情報がないかその他等と不可分、漁獲量 0 または漁業なし。

年	日本	ニュージーランド	台湾	韓国	ロシア (旧ソ連)	ウクライナ	合計
1975	19,720	71					19,79
1976	19,598	94					19,62
1977	26,594	556		1,473	26,837		55,46
1978	28,994	1,784		2,756	3,112		36,64
1979	26,561	414		1,111	14,308		42,39
1980	63,266	280		558	15,506		79,61
1981	47,811	1,019		961	12,902		62,69
1982	48,247	610		3,613	18,118		70,58
1983	43,382	1,421	10,895	4,215	20,319		80,23
1984	68,182	6,277	15,618	6,833	19,076		115,98
1985	56,968	1,781	8,343	2,564	18,267		87,92
1986	48,797	1,000	1,253	4,008	15,818		70,87
1987	48,463	4,722	850	8,898	9,135		72,06
1988	51,402	4,354		10,165	7,481		73,40
1989	69,569	7,622		15,494	13,413		106,09
1990	9,867	20,489		13,139	21,654	636	67,78
1991	12,195	22,985		9,290	17,331	699	62,50
1992	12,126	44,376	5,000	17,798	28,767	2,932	110,99
1993	8,072	25,530	6,000	6,652	15,600	5,546	67,40
1994	10,180	51,841	7,000	13,110	22,098	10,428	114,65
1995	19,687	59,497	8,284	17,436	17,004	6,630	128,53
1996	11,342	23,474	14,747	9,836	8,365	4,136	71,90
1997	5,971	44,845	6,620	13,068	5,809	7,955	84,26
1998	3,729	42,541	3,974	12,278	1,907	5,321	69,75
1999	1,852	27,282	761	9,951	1,352	1,462	42,66
2000	1,503	20,878		8,801		2,872	34,054
2001	1,139	35,100		11,380		8,623	56,242
2002	1,850	50,016		16,991		11,230	80,08
2003	3,274	43,730		17,779		10,379	75,162
2004	3,906	84,409		32,079		20,122	140,51
2005	4,757	87,810	3,831	30,634			123,20
2006	3,951	69,213	3,304	25,092		12,935	111,19
2007	3,081	70,840		25,643			99,56
2008	1,359	55,627		15,611			72,59
2009	761	46,257		19,116			66,13
2010	856	32,557		24,145			57,55
2011	1,336	36,979		21,953			60,26
2012	1,789	35,301		15,808			52,89
2013	1,711	24,637		12,776			39,12
2014	920	14,999	6	7,642			23,56

1)。

しかし、1990年(1989/90年漁期)には、それまで二国間協定に基づいて行われていた操業(GG船)に対してニュージーランド政府から日本のいか釣り船への割当量がなくなり、さらに合弁船(JV船)も半減した。このため、この漁期の出漁船数は前年の138隻(約5万トン)から45隻(8,000トン)へと減少した。これにより、それまでは我が国が同海域で6~7割を占めていたNZスルメ類の漁獲量割合は、1990年を境に2割以下に減少した(図1)。本資源は、韓国、日本、ニュージーランドが主に漁獲しており、かつてはロシア(旧ソ連)、ウクライナ及び台湾も漁獲していた(表1)。

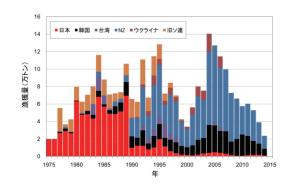


図 1. NZ スルメ類の国別漁獲量 (データ: FAO 2016)

なお、ニュージーランド政府は、現地人雇用を優先させる目的で法定最低賃金(Ministry of Business, Innovation & Employment - Previous minimum wage rates)を年々徐々に増加させ、2006年以降は最低賃金が急上昇し(2016年4月から16歳以上で時給NZ\$15.25)、外国船が安い外国人漁業労働者を雇用するメリットが減少した。さらに、ニュージーランド政府が、自国水域内で操業する漁船を原則として自国船籍船に限るとの法改正を行ったことから(2014年8月7日NZ議会通過)、2016年5月1日以降、操業にはNZ船籍への転籍が必要となった(Ministry for Primary Industries-Foreign Charter Vessels update 2016)。

主要漁場は、いか釣り船とトロール船とで若干異なる。いか釣り船は北島西岸及び南島周辺で主に操業し、トロール漁業は西岸以外の南島周辺、オークランド島周辺等に漁場が形成される(図 2)。最近の規制強化により、我が国のトロール船は、主として南島南岸とオークランド島周辺で操業している。いか釣り船は大陸棚のほとんどを漁場とするのに対し、トロール船はやや深みの大陸棚縁辺部で操業する。なお、後述するように、ニュージーランドスルメイカとオーストラリアスルメイカの主分布の違いから、北島周辺を除く漁獲物はニュージーランドスルメイカからなると考えて良い。

漁期は基本的には南半球の夏から冬の12~6月である。

いか釣り漁業の盛漁期は $1 \sim 3$ 月となることが多い。通常、いか釣り船の操業は南島の北西岸から始まり、次いでその年に最も豊度が高い漁場(例えば 1989 年は南島の東岸)での本格的な漁獲となり、最後は北島の西岸で終漁となる。トロール漁業の盛漁期は、年によって若干異なり、 $1 \sim 5$ 月にかけての数か月である。オークランド島周辺の漁期は南島南岸より 1 か月ほど遅く始まることが多い。

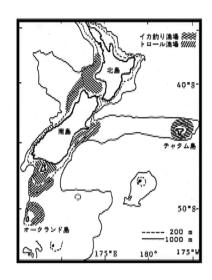


図 2. ニュージーランド海域におけるいか釣り漁場とトロール漁場の分布

生物学的特性

ニュージーランドスルメイカとオーストラリアスルメイカの分布域は、ニュージーランドの北島と南島の間で一部重なるものの(Mattlin et al. 1985)、比較的明瞭に分離している(図 3)。ニュージーランドスルメイカは南島の大陸棚を中心に分布しており、一方、オーストラリアスルメイカは北島及びオーストラリア南部にも広く分布し前者に比べて暖海性である(Smith et al. 1987)。

幼イカがそれぞれ親イカと同じように分布し(図 4)、主要漁場が南北方向に季節移動しない、標識イカが放流地点の近くで再捕された、近接する南島の南岸とオークランド島周辺で漁獲されるイカの大きさや熟度が異なる等から、両種とも深浅方向に移動する以外は大きな回遊は行わないと考えられる(Uozumi et al. 1995)。このように、ニュージーランド海域では、2種が漁獲されるだけでなく、それぞれの漁場の独立性が高く相互の交流が少ないと考えられる。

両種の産卵場は、成熟した雌が周年にわたって各地で漁獲されることから、前述した種の分布域に広く存在すると考えられる。平衡石を用いた日齢査定によって推定された孵化日によると、産卵は2種とも周年にわたっていると推定される(Uozumi et al. 1995)。しかし、後述するように漁期が存在することから、発生時期によってその豊度がかなり異なる。オーストラリアスルメイカでは6~7月に発生したものが多く、ニュージーランドスルメイカでは7~9月に発生したものが卓越する場合が多い。このように、2種とも南半球の冬期を中心とした時期に発生したものが比較的卓越する場

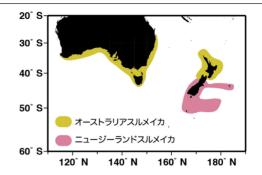


図 3. ニュージーランド海域における NZ スルメ類 2 種(ニュージーランドスルメイカ *Nototodarus sloanii* 及びオーストラリアスルメイカ *Nototodarus gouldi*) の分布域(Martin *et al.* 1985 を改変)

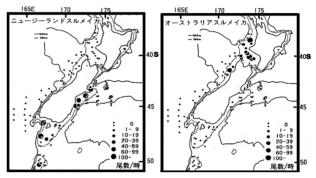


図 4. ニュージーランド海域における NZ スルメ類 2 種の幼イカの分布域(Uozumi and Forch 1995)

合が多いが、年によっては、他の時期に発生したものが卓越する場合もあり(Uozumi et al. 1995)、資源構造を曖昧なものにしている。

両種の成長は、平衡石を用いた日齢査定によって推定され、両種とも雌の成長は雄よりも早い(表 2)。2種の成長については、図 5 のようなロジスティック曲線で表される(Uozumi et al. 1995)。発生時期の異なる個体の成長を比較すると、どの日齢でも発生した時期に水温が高かった個体の成長が最も良い。このように、各日齢での成長速度は異なるが、最大体長にはさほど大きな差が見られない。両種の寿命は1年で、その他のアカイカ科と同様である。成熟は、雄は200日頃から始まり、270日前後にピークに達する。雌ではその頃から卵巣、輪卵管等の生殖器官が急速に発達する。また、交接もその頃活発に行われる。

着底トロールによって採集されたニュージーランドスルメイカの主餌料は、ハダカイワシ類、ミナミダラ (Micromesistius australis) 及びオキアミ類 (Nyctiphanes australis等) が報告されている (Yatsu 1986)。また、いか釣りによって採集されたオーストラリアスルメイカの主餌料は、魚類ではマイワシやバラクータ (Thyrsites atun)、甲殻類ではオキエビ科の Leptochela sydnensis やスナホリムシ科の Cirolana sp. が報告されている (O'Sullivan and Cullen 1983)。両種の捕食については、アホウドリ類数種(Cherel and Klages 1998) 及び鰭脚類が報告されている。また、オーストラリアスルメイカについては、さめ類(シュモクザメ類、ヨシキリザメ)等による捕食が報告されている (Dunning et al. 1993)。

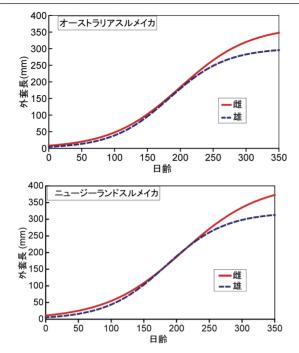


図 5. オーストラリアスルメイカ(上)及びニュージーランドスルメイカ(下)の成長(Uozumi *et al.* 1995 より)

表 2. NZ スルメ類 2 種の日齢と外套長

	日齢	外套長(cm)
ニュージーランド		
スルメイカ		
雌	350	400
雄	350	320
オーストラリア		
スルメイカ		
雌	350	370
雄	350	300

資源状態

一般的に、本種のような単年性のいか資源は、毎年新たに加入が決まることから大きな年変動をする傾向を持つ。本水域でも個々の資源は年により大きく変動していた。2014年までの各国による総漁獲量で見ると、20年間の年平均及び最近5年間の漁獲量はそれぞれ7.5万トン、4.7万トンであることから、本資源は現状では減少傾向にあると示唆される。

いか釣り船は、その年に豊度が最も高い漁場で集中操業するため、その主要漁場は毎年のように変化する。また前述のように、ニュージーランド海域のスルメイカ類の資源は複雑でいくつもの単位からなっていることもあり、いか釣り船のCPUE(操業船1日当たりの漁獲量)の傾向は、かなりの年変動を示した(図6)。同海域におけるトロール漁業は、目的とする魚種の変更等の影響で必ずしもCPUEが資源水準の変動を的確に反映しているわけではないことから、本種の資源量を推定するには本海域で操業するいか釣り船のCPUEを用いることが妥当であると考えられる。

2015 年までの我が国のいか釣り船の CPUE を見る限り、

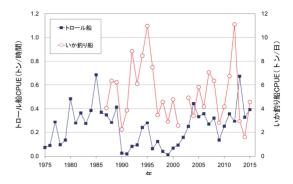


図 6. ニュージーランド海域における日本のトロール船の CPUE(トン/時間) 及びいか釣り船の CPUE(トン/日) の経年変化 2002年(2001/02年)漁期にはいか釣り船は出漁しなかった。

過去 10 年間の漁獲量は、各漁船 1 日あたり 2 ~ 11 トン前 後(平均5.1トン)であり、漁獲成績報告集計による2015 年の CPUE は 1.6 トン / 日で低い値であったが、2015 年は 4.6 トンとなった。1987 年から 2015 年までの我が国いか 釣り船の CPUE データを見て、最大値(2012年)の11.1 トン/日と最小値(2014年)の1.6トン/日の間を3分割 して上から高位(7.9 トン / 日以上)、中位(CPUE が 4.8~ 7.9 トン / 日)、低位(CPUE が 4.8 トン / 日以下) という基 準で評価すると、2015年(2015年1月から2015年5月) 漁期の資源水準は低位であったと判断できる。また、本資源 の総漁獲量ベースで見ると、2013年の各国による本資源の 総漁獲量は約3.9万トンで2004年以降低迷しており、減少 傾向が続いていることから、本種の資源は低位、減少傾向に あるとみられる。しかし、2016年(2015年10月1日~ 2016年9月30日)のNZ水域の水揚げ数量を見ると4.3 万トンとなっており(Ministry for Primary Industries -NZ Fisheries Info 2016)、本資源の回復の兆しもみられる。

管理方策

ニュージーランド政府によって 1978 年に 200 海里水域 が施行され、本海域の NZ スルメ類の資源も同国政府の管轄 下に入り、1987年から漁獲割当制度(QMS)を設けて管理 が始まった。当初において、同政府はトロール漁業を漁獲量 規制する一方で、いか釣り漁業に対しては努力量規制(隻 数)で管理していた。しかし、同じ資源に異なる管理法策を 用いるという矛盾から、現在ではいか釣り漁業にも漁獲量規 制を実施している。これはトロール漁業には混獲問題があり、 努力量による規制が適用できないためである。現在、NZス ルメ類資源は北側の SOU 10T ストック、東西の SOU 1J と SQU 1Tストック及び南のオークランド諸島のSQU6Tストッ クに区分されており(図7)、それぞれに対して商業漁獲可 能量(TACC)が決められている。近年では、CPUE標準化 を基にした、資源のモデル (depletion model) を用いて、オー クランド島周辺の本種資源動態を再現しているが(McGregor and Large 2015)、イカ類のような単年性の生物では、ス トックを維持するための MSY を推定することは不可能であ り、その必要もない。現在の漁獲量及び努力量データから漁 期前や漁期中に利用可能な資源量を見積もることは不可能で、

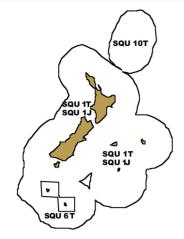


図 7. ニュージーランドの NZ スルメ類の管理海域



図 8 ニュージーランドにおける NZ スルメ類の TACC と実際の水 揚量の推移(Ministry of Fishery of New Zealand 2016 より、年間 統計は 10 月から始まる 12 か月、よって 2016 年統計は 2015 年 10 月から 2016 年 9 月までの集計値)

漁獲の規模から見ると将来の加入量や資源量に影響を与える ことはないと考えられている。このため、本資源に対する TACC のセットはここ 10年の間に大きな変化はない (図8)。 これらの TACC に基づき配分される個別譲渡可能漁獲割当量 (ITQ) は、DWG (Deepwater Group Limited) によって管理 されている。安全率を見込んだ管理を行っていることから、 NZスルメ類資源への漁獲の影響は問題となっていない。た だし、南部海域のオークランド諸島における SQU6T ストッ クは、雑魚の混獲が少ないイカ狙いのトロール操業が中心 となる。しかし、トロール操業によってこの諸島海域に生 息しているニュージーランドアシカ (Phocarctos hookeri) の混獲死亡が発生するため、1993~2004年までの間に ニュージーランドの漁業省と環境省は、毎年その死亡を制限 するための混獲数の限度を60~70頭に設定していた。近 年になってイカの資源量が増加したことを受け、2004~ 2006年には115~150頭に増やしたが、2006年以降は 68~113頭と毎年ごとに設定されている。2013年の報 告 (Ministry for Primary Industries - Aquatic Environment and Biodiversity Report) によると 2010 ~ 2011 年漁期は 実際の混獲数は56頭/年と推定され、近年では制限頭数を 超えて混獲されることはなかった。また、同海域における イカトロール船の操業は、アシカの混獲を減らす混獲防止 装置 (SLED; Sea Lion Exclusion Device) の装着が義務づけ

られ、これにより混獲死亡数が減少している(Thompson *et al.* 2010)。

執筆者

外洋資源ユニット いか・さんまサブユニット 東北区水産研究所 資源海洋部 浮魚・いか資源グループ 阿保 純一・酒井 光夫

参考文献

Cherel Y. and Klages N. 1998. A review of the food of albatrosses. *In* Robertson G. and Gales R. (eds.), Albatross biology and conservation. Surrey Beatty, Chipping Norton. 113-136 pp.

Ministry of Business, Innovation & Employment - Previous minimum wage rates.

https://www.employment.govt.nz/hours-and-wages/pay/minimum-wage/previous-rates/(2016年10月21日)

Dunning M.C. Clarke M.R. and Lu C.C. 1993. Cephalopods in the diet of oceanic sharks caught off eastern Australia. *In* Okutani, T., O'Dor, R.K., and Kubodera, T. (eds.), Recent advances in cephalopod fisheries biology. Tokai University Press, Tokyo. 119-131 pp.

FAO Fisheries and Aquaculture Statistics and Information Service. 2015. Capture production 1950-2011. FISHSTAT Plus - Universal software for fishery statistical time series online. Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/fishery/statistics/software/fishstat/en(2016年10月21日)

加藤充宏・三谷 勇. 2001. ニュージーランドスルメイカの漁獲と漁場水温に関する好漁期と不漁期の比較. 神奈川県水産総合研究所研究報告. 6: 35-45.

http://www.agri.pref.kanagawa.jp/suisoken/pdf/SUISKN/suiskn6-06.pdf (2006 年 12 月 19 日)

Mattlin R. H., Scheibling R.E. and Förch E.C. 1985. Distribution, abundance and size structure of arrow squid (*Nototodarus* sp.) off New Zealand. NAFO Sci. Coun. Studies 9: 39-45.

McGregor V. and Large K. 2015. Progress with in-season modelling of squid within New Zealand's EEZ and Management strategy evolution (MSE). Documents of South Pacific Regional Fisheries Management Organization 3rd meeting (SC-03-26).

Ministry for Primary Industries NZ Fisheries info. Arrow squid (SQU) .

http://fs.fish.govt.nz/Page.aspx?pk=7&tk=100&ey=2015 & http://fs.fish.govt.nz/Page.

aspx?pk=7&tk=100&ey=2016(2016年10月21日)

Ministry for Primary Industries - Foreign Charter Vessels update 2016. http://www.fish.govt.nz/en-nz/Commercial/

Foreign+Charter+Vessels/default.htm (2016 年 10 月 20 日)

- O'Sullivan D. and Cullen J.M. 1983. Food of the squid *Nototodarus gouldi* in Bass Straight. Aust. J. Mar. Freshw. Res., 34: 261-285.
- Smith P.J., Mattlin R.H., Roeleveld M.A. and Okutani T. 1987.
 Arrow squids of the genus Nototodarus in New Zealand waters; systematics, biology, and fisheries. N. Z. J. Mar. Freshw. Res., 15: 247-253.
- Thompson, F.N., Oliver, M.D., Abraham, E.R. 2010. Estimation of the capture of New Zealand sea lions (*Phocarctos hookeri*) in trawl fisheries, from 1995–96 to 2007–08
- Ministry for Primary Industries Marine mammal bycatch in New Zealand trawl fisheries,1995–96 to 2010–11 New Zealand Aquatic Environment and Biodiversity Report No. 102.
 - http://fs.fish.govt.nz/Page.aspx?pk=113&dk=23117 (2016年10月20日)
- Uozumi Y. and Forch E. 1995. Distribution of juvenile arrow squids *Nototodarus gouldi* and *N. sloanii* (Cephalopoda: Oegopsida) in New Zealand waters. Fish. Sci., 61: 566-573.
- Uozumi Y., Koshida S. and Kotoda S. 1995. Maturation of arrow squids *Nototodarus gouldi* and *N. sloanii* with age in New Zealand waters. Fish. Sci., 61: 559-565.
- Yatsu A. 1986. Feeding habit of *Nototodarus sloanii* caught by a bottom trawl. JAMARC, 30:45-52.

ニュージーランドスルメイカ類(ニュージーランド海域)の 資源の現況(要約表)

資 源 水 準	低 位
資 源 動 向	減少
世界の漁獲量 (最近5年間) (FAO統計)	2.3 万~6.0 万トン 最近(2014)年:2.4 万トン 平均:4.7 万トン (2010~2014年)
我が国の漁獲量 (最近5年間) (FAO統計)	856~1,789トン 最近(2014)年:920トン 平均:1,322トン (2010~2014年)
管 理 目 標	ニュージーランド EEZ 内の TACC: 12.7 万トン (2015/16 漁期)
資源の状態	推定できず
管 理 措 置	4 ストックに分けて、それぞれに TACC を決定
管理機関・関係機関	資源管理:DWG が ITQ を管理 資源評価:ニュージーランド政府
最新の資源評価年	_
次回の資源評価年	_